
Solein – pożywienie z wody, elektryczności i powietrza uratuje Ziemię?
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wysokogórskie obszary Azji – głównie Himalaje i Tybet, ale też Karakorum, Hindukusz czy Pamir – zwane są „trzecim biegunem”, gdyż zawierają największe rezerwy lodu poza Arktyką i Antarktyką. Znajdują się tam dziesiątki tysięcy lodowców, od których zależy byt 1,5-2 miliardów ludzi. Lodowce zapewniają im wodę do picia, generowania energii i na potrzeby rolnictwa. Nie od dzisiaj wiadomo, że w wyniku globalnego ocieplanie utrata lodu przez te lodowce przyspiesza. Obecnie każdego roku tracą one ponad 22 gigatony (miliardy ton) lodu rocznie. Naukowcy z University of Utah i Virginia Tech dowiedli właśnie, że zmiany zachodzące w występowaniu monsunów w Azji Południowej, również przyspieszają topnienie lodowców „trzeciego bieguna”.
Główny autor badań, Sonam Sherpa z University of Utah mówi, że jeśli intensywność monsunów oraz czas ich początku i końca nadal będą ulegały zmianie, może to przyspieszyć topnienie lodowców i zagrozić życiu setek milionów ludzi. Lodowce są bowiem pewnym, stabilnym i przewidywalnym źródłem wody. Jeśli ich zabraknie, to w przyszłości ludzie będą musieli polegać na znacznie mniej pewnych opadach deszczu i śniegu. To zaś będzie groziło niedoborami wody i suszami w regionach, w których lodowce zapewniają wodę ponad 1,5 miliardowi ludzi.
Lodowce w wysokich górskich partiach Azji akumulują masę latem. Niskie temperatury panujące na dużych wysokościach powodują, że niesiona monsunami wilgoć opada w postaci śniegu, zwiększając masę lodowców. Lodowce mogą tracić masę albo z powodu szybszego niż zwykle topnienia, albo zmniejszenia się opadów. Globalne ocieplenie już powoduje, że lodowce szybciej topnieją. Teraz dochodzą do tego niepokojące zmiany w monsunach. Mogą one spowodować skrócenie sezonu opadów, zmniejszenie ich ilości czy też zamianę opadów śniegu w deszcz, który dodatkowo przyspiesza topnienie.
Szybsze wycofywanie się lodowców niesie też za sobą ryzyko gwałtownych, niespodziewanych powodzi powodowanych przez jeziora lodowcowe. Jeziora takie powstają na przedpolach lub powierzchni lodowca. Tworzą się za moreną, barierą z lodu czy w zagłębieniu w powierzchni lodowca. W wyniku topnienia lodu wewnątrz bariery, jej erozji wewnętrznej, może dojść do gwałtownego pęknięcia takiej naturalnej tamy. Mamy więc tutaj do czynienia nie tylko z długoterminowym ryzykiem braku wody, ale też z codziennymi zagrożeniami dla położonych w dolinach wsi, dróg, mostów i wszelkiej innej infrastruktury.
Najważniejszymi wnioskami, płynącymi ze wspomnianych badań jest spostrzeżenie, że w środkowych i zachodnich Himalajach – gdzie lodowce zwykle przyrastają latem – utrata lodu spowodowana jest przez coraz częściej zdarzające się opady deszczu; na wschodzie Himalajów za utratą lodowców odpowiadają zmniejszone opady śniegu; powtarzające się cykle wycofywania się lodowców są powiązane z cyklami monsunów.
Wyniki badań zostały opublikowane w artykule Investigating the Influence of Climate Seasonality on Glacier Mass Changes in High Mountain Asia via GRACE Observations.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Poszukując życia na innych planetach naukowcy skupiają się na wodzie. Jest ona niezbędna dla życia na Ziemi, zatem jej obecność – lub przynajmniej warunki pozwalające na jej obecność – jest uważana za warunek sine qua non możliwości występowania życia na innych planetach. Badacze z MIT, Politechniki Wrocławskiej oraz innych uczelni proponują na łamach PNAS, by za ciała niebieskie zdolne do utrzymania życia uznać też i takie, na których mogą występować ciecze jonowe. A mogą one powstawać w warunkach, w jakich woda w stanie ciekłym nie może istnieć. Jeśli autorzy najnowszych badań mają rację, to liczba potencjalnych miejsc istnienia życia w przestrzeni kosmicznej może być znacznie większa, niż uważamy. Oczywiście nie będzie to takie życie, jakie znamy z Ziemi.
Ciecze jonowe to substancje chemiczne składające się z jonów. To sole, które pozostają w stanie płynnym w temperaturze poniżej 100 stopni Celsjusza. Ciecze takie mają bardzo niską prężność par, co oznacza, że niemal się nie ulatniają.
Z badań, w których brał udział doktor Janusz Pętkowski z Wydziału Inżynierii Środowiska Politechniki Wrocławskiej, wynika, że ciecze jonowe mogą z łatwością powstawać ze składników, których obecność jest spodziewana na niektórych planetach i księżycach. Badacze wykazali, że mieszanina kwasu siarkowego i niektórych składników organicznych zawierających azot, prowadzi do utworzenia cieczy jonowej. Kwas siarkowy jest emitowany przez wulkany, a składniki organiczne z azotem wykrywamy na asteroidach czy planetach, więc mogą być szeroko rozpowszechnione.
Jak już wspomnieliśmy, ciecze jonowe mają niską prężność par, mogą powstawać i pozostawać stabilne przy wyższych temperaturach i niższym ciśnieniu atmosferycznym niż woda w stanie ciekłym. Zatem na tych ciałach niebieskich, na których woda nie może powstać lub się utrzymać, mogą istnieć ciecze jonowe. A, jak zauważają badacze, w cieczach takich niektóre biomolekuły – jak pewne białka – mogą być stabilne. Kierująca pracami zespołu badawczego doktor Rachana Agrawal zauważa, że jeśli w poszukiwaniu pozaziemskiego życia uwzględnimy ciecze jonowe, znacząco zwiększymy ekosferę, czyli obszar wokół gwiazd, w którym może istnieć życie.
Badania nad cieczami jonowymi w kontekście istnienia życia rozpoczęto w związku z rozważaniem o obecności życia na Wenus. A raczej w górnych warstwach atmosfery, gdyż na powierzchni planety panuje temperatura rzędu 467 stopni Celsjusza, a ciśnienie atmosferyczne jest 90-krotnie większe niż na powierzchni Ziemi. Bardziej przyjazne warunki panują wśród chmur, w górnych warstwach atmosfery. Nie od dzisiaj mówi się o zorganizowaniu misji badawcza w te regiony.
Chmury na Wenus składają się głównie z kwasu siarkowego. Naukowcy z MIT prowadzą eksperymenty, których celem jest opracowanie technik zbierania i badania próbek podczas misji. Jeśli takie próbki zostałyby zebrane, zbadanie istniejących w nich związków organicznych będzie wymagało najpierw odparowania kwasi siarkowego. Badacze stworzyli więc pracujący przy niskim ciśnieniu układ, w którym odparowywali kwas siarkowy z roztworu kwasu i glicyny. Jednak za każdym razem, gdy usunęli większość kwasu, w urządzeniu pozostawała warstwa cieczy. Uczeni szybko zdali sobie sprawę, że kwas siarkowy przereagował z glicyną, tworząc ciecz jonową, która utrzymywała się w szerokim zakresie temperatur i ciśnienia. Wtedy też zespół Agrawal wpadł na pomysł, by sprawdzić, czy ciecze jonowe mogą powstawać i utrzymywać się na planetach, na których panują zbyt wysokie temperatury lub zbyt niskie ciśnienie, by utrzymała się na nich woda w stanie ciekłym.
Eksperymentatorzy przetestowali mieszaniny kwasu siarkowego z ponad 30 związkami organicznymi zawierającymi azot. Mieszaniny tworzyli m.in. na powierzchni skał bazaltowych, które istnieją na wielu planetach. Byliśmy zdumieni, w jak wielu różnych warunkach dochodzi do powstania cieczy jonowej. Jeśli umieścisz kwas siarkowy i związki organiczne na bazalcie, nadmiar kwasu siarkowego wsiąknie w bazalt, a na powierzchni pozostaną krople cieczy jonowej. Formowała się ona w każdych testowanych przez nas warunkach, mówi współautorka badań Sara Seager.
Ciecze jonowe powstawały w temperaturze do 180 stopni Celsjusza przy ekstremalnie niskim ciśnieniu. To oznacza, że mogą powszechnie występować na skalistych planetach czy księżycach. Wyobraźmy sobie planetę gorętsza od Ziemi, na której nie ma wody, a na której występuje, lub kiedyś występował, kwas siarkowy z aktywności wulkanicznej. Wystarczy, że ten kwas będzie miał kontakt ze związkiem organicznym. A związki te są powszechne w Układzie Słonecznym, wyjaśnia Seager. Tak utworzona ciecz jonowa może teoretycznie istnieć przez tysiąclecia, stając się oazą prostych form życia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
Badania zostały omówione na łamach PNAS.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Szwajcarii powstaje „żywy” materiał, który w sposób aktywny pobiera dwutlenek węgla z atmosfery. Wewnątrz materiału znajdują się cyjanobakterie, które wiążą CO2 na dwa różne sposoby. Nad niezwykłym projektem, którego celem jest połączenie konwencjonalnych materiałów z bakteriami, grzybami czy glonami pracują naukowcy z Politechniki Federalnej w Zurychu. Ich celem jest stworzenie materiałów, które dzięki metabolizmowi mikroorganizmów nabierają nowych pożądanych właściwości. Na przykład usuwają dwutlenek węgla z powietrza.
Zespół pracujący pod kierunkiem profesora Marka Tibbitta z katedry Inżynierii Makromolekularnej stworzył właśnie żel zawierający cyjanobakterie. Można go kształtować za pomocą drukarki 3D. Niezwykłe jest to, że żel – mimo że jest miękki – ma być materiałem budowlanym. A jedyne, czego potrzebuje, by się nim stać, to światło słoneczne i słona woda zawierająca proste do uzyskania składniki odżywcze. Oraz dwutlenek węgla z atmosfery. Jakby tego było mało, materiał absorbuje więcej CO2 niż wiążą zawarte w nim cyjanobakterie. Dzieje się tak, gdyż przechowuje on atmosferyczny węgiel nie tylko w postaci biomasy, ale również w postaci mineralnej.
Cyjanobakterie to jedne z najstarszych form życia na Ziemi. Przeprowadzają bardzo efektywną fotosyntezę i nie potrzebują wiele światła, by z CO2 i wody wytwarzać biomasę. Jednocześnie, w wyniku przeprowadzanej przez nie fotosyntezy, dochodzi do zmiany środowiska chemicznego wokół komórki i tworzenia się węglanów. Węglany deponowane są wewnątrz żelu, wzmacniają go, a jednocześnie same pochłaniają atmosferyczny dwutlenek węgla, przechowując go w bardziej stabilnej formie niż bakterie. Badania wykazały, że taki żel pochłania węgiel przez 400 dni i przechowuje 26 miligramów CO2 na każdy gram. To znacząco więcej niż wiele innych materiałów.
Twórcy żelu chcą w przyszłości zbadać, czy sprawdzi się on na przykład jako powłoka, którą można będzie pokrywać i zamieniać je w miejsca pochłaniające dwutlenek węgla z atmosfery.
Źródło: Dual carbon sequestration with photosynthetic living materials, https://www.nature.com/articles/s41467-025-58761-y
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z SETI Institute oraz Uniwersytetu Kalifornijskiego w Davis są pierwszymi, którzy zarejestrowali wielkie pierścienie powietrza wypuszczane przez humbaki. Zwierzęta tworzyły je podczas przyjaznej interakcji z ludźmi. Trudno oprzeć się wrażeniu, że pierścienie te przypominają kółka wypuszczane przez palaczy papierosów. Naukowcy przypuszczają, że pierścienie to albo próba zabawy, albo komunikacji z ludźmi.
Nie od dzisiaj wiemy, że humbaki wykorzystują bańki powietrza do otaczania ławic ryb, na które polują. Ponadto samce głośno wypuszczają powietrze, tworząc widoczne ślady na wodzie, gdy konkurują o samice. Tym razem mamy do czynienia z nieznanym wcześniej zjawiskiem - tworzeniem specyficznych baniek podczas przyjaznej interakcji z ludźmi.
Humbaki żyją w złożonych społecznościach, wydają różne dźwięki, posługują się bąblami powietrza jak narzędziami, pomagają innym gatunkom atakowanym przez drapieżniki. Teraz widzimy, że wydmuchują w kierunku ludzi pierścienie z powietrza. To może być sposób na interakcję, obserwowanie naszej reakcji i zaangażowanie nas w zabawę lub komunikację, mówi doktor Fred Sharpe.
Humbaki w przyjazny sposób interesują się łodziami i pływającymi ludźmi. Większość spośród obserwowanych przez nas na całym świecie dziesiątek populacji waleni, podpływała do łodzi i ludzi, wypuszczając bąble, dodaje Jodi Frediani.
Źródło: Humpback Whales Blow Poloidal Vortex Bubble Rings, https://onlinelibrary.wiley.com/doi/10.1111/mms.70026
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.