Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W jakim wieku są nasze organy wewnętrzne? Odpowiedź może zaskoczyć

Recommended Posts

Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych.

Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer.
Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem.

Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań.
Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy.

Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku.

Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu.

Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego.

Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2.


« powrót do artykułu

Share this post


Link to post
Share on other sites

To o co pytasz nie ma żadnego związku z artykułem.

Myszy pewnie były karmione jedzeniem zawierającym jakieś konkretne izotopy różnych pierwiastków (pewnie głównie węgla) i potem sprawdzona, w których komórkach ile jest tych izotopów.

Ty chyba potrzebujesz standardowego badania, które bez problemu możesz wykupić w każdej prywatnej klinice (nie wiem jak jest w publicznej służbie zdrowia). Dokładniejszych badań się raczej an ludziach nie przeprowadza, chyba że w ramach konkretnych badań naukowych. Tu trzeba by się rozejrzeć na co poszczególne uczelnie i inne grupy badawcze mają granty.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Potrząsanie głową w celu pozbycia się wody, która nalała się do ucha, może prowadzić do... uszkodzenia mózgu. Do takich wniosków doszli naukowcy z Cornell University i Virginia Tech, którzy zbadali przyspieszenie potrzebne do wyrzucenia wody z kanału słuchowego. O wynikach swoich badań poinformowali podczas odbywającego się właśnie 72. Dorocznego Spotkania Wydziału Dynamiki Płynów Amerykańskiego Towarzystwa Fizycznego.
      W opublikowanym abstrakcie pracy czytamy: jeden z końców zamkniętej szklanej hydrofobowej tuby o różnej średnicy został użyty jako uproszczony model kanału słuchowego. Tuba została umieszczona na strunie i symulowaliśmy potrząsanie głowy. Badania wykazały, że krytyczne przyspieszenie potrzebne do pozbycia się wody zależy w dużej mierze od ilości wody i jej pozycji w kanale. Stwierdziliśmy, że krytyczne przyspieszenie dochodzi do 10g, co może spowodować poważne uszkodzenie ludzkiego mózgu. Krytyczne przyspieszenie jest znacznie wyższe w tubach o małym przekroju, co oznacza, że pozbycie się wody z ucha poprzez potrząsanie jest trudniejsze dla dzieci niż dla dorosłych.
      To właśnie w przypadku dzieci do wytrząśnięcia wody potrzebne jest przyspieszenie nawet 10-krotnie przekraczające przyspieszenie ziemskie.
      Na potrzeby badań naukowcy wykorzystali druk 3D za pomocą którego stworzyli model ludzkiego kanału słuchowego opierając się przy tym na danych z tomografu komputerowego. Szklany model został pokryty od wewnątrz krzemowodorem, który dobrze symuluje stopień hydrofobowości jaki panuje wewnątrz ludzkiego ucha.
      Z naszych eksperymentów oraz modelu teoretycznego wynika, że jednym z czynników decydujących o wypłynięciu płynu z ucha jest jego napięcie powierzchniowe, mówi Baskota. Zamiast więc potrząsać głową można do ucha wprowadzić coś, co obniży napięcie powierzchniowe. Prawdopodobnie wpuszczenie kilku kropli płynu u niższym napięciu powierzchniowym niż woda, takiego jak alkohol czy ocet, pozwoli zmniejszyć napięcie powierzchniowe i spowoduje wypłynięcie wody z ucha, stwierdził Baskota.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Posługując się rezonansem magnetycznym (MRI), naukowcy wykryli w mózgach otyłych nastolatków oznaki uszkodzeń, które mogą być powiązane ze stanem zapalnym mózgu. Wyniki badań zostaną zaprezentowane na dorocznej konferencji Towarzystwa Radiologicznego Ameryki Północnej.
      Dane WHO wskazują, że na świecie liczba niemowląt i dzieci w wieku 5 lat bądź młodszych z nadwagą lub otyłością wzrosła z 32 mln w 1990 r. do 41 mln w roku 2016.
      Bezpośrednie badanie uszkodzeń zapalnych w mózgach pacjentów z otyłością umożliwił rozwój metod MRI, np. rezonansu tensora dyfuzji (ang. diffusion tensor imaging, DTI).
      W ramach najnowszego studium zespół porównał wyniki DTI 59 otyłych i 61 zdrowych nastolatków w wieku 12-16 lat. Naukowcy opierali się na wskaźniku anizotropii frakcyjnej (FA), który koreluje z kondycją istoty białej; zmniejszenie FA wskazuje na narastające uszkodzenie (spadek integralności) substancji białej.
      Naukowcy wykazali, że u otyłych nastolatków występują spadki FA w obrębie ciała modzelowatego (łac. corpus callosum), czyli najsilniej rozwiniętego spoidła (pasma istoty białej) łączącego półkule mózgu. Zmniejszenie FA wykazano także w środkowym zakręcie okołooczodołowo-czołowym, a więc w regionie mózgu związanym z kontrolą emocjonalną i układem nagrody.
      Związane z leptynoopornością i stanem zapalnym zmiany w mózgach otyłych nastolatków dotyczyły ważnych regionów, odpowiedzialnych za kontrolę apetytu, emocji i funkcji poznawczych - opowiada Pamela Bertolazzi, doktorantka z Uniwersytetu w São Paulo.
      Jak wyjaśniają naukowcy, stwierdzono, że istnieje ujemna korelacja m.in. między TNF-ß i FA w zgrubiałej części tylnej ciała modzelowatego (spelnium corporis callosi) czy między IL6 i FA w środkowym zakręcie okołooczodołowo-czołowym.
      Brazylijka tłumaczy, że leptyna to hormon wydzielany głównie przez komórki tłuszczowe (adipocyty), który spełnia ważną rolę w regulacji spożywania pokarmu i gospodarki energetycznej organizmu. U niektórych ludzi z otyłością mózg nie reaguje na leptynę (jest leptynooporny). Prowadzi to do wytwarzania zwiększonych ilości tego białka i jedzenia mimo adekwatnych, a nawet nadmiernych zapasów tłuszczu. A że leptynę powiązano z neurozapaleniem, można przypuszczać, co się w takiej sytuacji dzieje.
      Po zakończeniu wielospecjalistycznego leczenia odchudzającego chcielibyśmy powtórzyć MRI u tych nastolatków, by sprawdzić, czy [zaobserwowane] zmiany w mózgu są odwracalne, czy nie.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Popularne przekonanie mówi, że jeden rok życia psa odpowiada 7 latom życia człowieka. Oznaczałoby to, że 14-letni pies to odpowiednik ludzkiego 100-latka. Naukowcy zaproponowali jednak znacznie lepszy przelicznik wieku psiego na ludzki. Przelicznik bazujący na najnowszych osiągnięciach nauki.
      Obecnie nauka o starzeniu się bazuje na zachodzących z wiekiem chemicznych modyfikacjach DNA, czyli na zegarze epigenetycznym. Każde dodanie grupy metylowej do DNA oznacza odliczanie naszego wieku, czyli wpływu chorób, tryb życia i genetyka na kondycję naszego organizmu. Podobny mechanizm działa też u innych zwierząt.
      Genetyk Try Ideker z University of California, San Diego (UCSD) wraz z zespołem, postanowił sprawdzić, jak zegary biologiczne zwierząt różnią się od zegara biologicznego człowieka. Uczeni rozpoczęli prace od psów. Wybrali właśnie te zwierzęta, gdyż żyją one w tym samym środowisku co ludzie, a wiele z nich jest otoczonych podobną opieką medyczną co ludzie.
      Wszystkie psy, niezależnie od rasy, osiągają dojrzałość płciową około 10. miesiąca życia i umierają przed 20. rokiem życia. Ideker, chcąc zwiększyć swoje szanse na zidentyfikowanie psiego zegara biologicznego skupił się na jednej rasie – labradorach retrieverach.
      Naukowcy przeanalizowali wzorce metylacji u 104 psów, których wiek wahał się od 4 tygodni do 16 lat. Badania ujawniły, że psy – a na pewno labradory – wykazują podobne do ludzi wzorce metylacji DNA związane z wiekiem. Podobieństwa mutacji w tych samych regionach DNA były najbardziej widoczne u młodych psów i młodych ludzi oraz starych psów i starych ludzi.
      Najważniejszym spostrzeżeniem było odkrycie, że w pewnych grupach genów odpowiedzialnych za rozwój metylacja w miarę starzenia się zachodzi bardzo podobnie. To zaś sugeruje, że – przynajmniej pod niektórymi względami – proces starzenia się jest tym samym, co proces rozwoju oraz że przynajmniej te zmiany są ewolucyjnie podobne u ssaków.
      Już wcześniej wiedzieliśmy, że psy wraz z wiekiem cierpią na te same choroby i podlegają takim samym zmianom poznawczym co ludzie. Tutaj mamy dowód na to, że również na poziomie molekularnym zachodzą podobne zmiany, mówi Matt Kaeberlein, biogerontolog z University of Washington, który nie był zaangażowany w najnowsze badania. Widać zatem, że dzielimy z psami również zegar biologiczny.
      Na podstawie swoich badań naukowcy stwierdzili, że wzór na przeliczenie wieku psa na wiek człowieka wygląda następująco: wiek człowieka = 16 ln(wiek psa) + 31. Innymi słowy należy logarytm naturalny z wieku psa pomnożyć przez 16 i dodać 31.
      Wynika z tego, że 7-tygodniowy szczeniak, gdyby był człowiekiem, miałby 9 miesięcy. W tym mniej więcej czasie u młodych obu gatunków zaczynają wyżynać się zęby. Formuła ta dobrze też pasuje do przeciętnej długości życia labradora i człowieka. W przypadku tej rasy wynosi ona bowiem 12 lat, a w przypadku ludzi jest to 70 lat.
      Na początku życia zegar biologiczny psa bije znacznie szybciej niż człowieka. Dwuletni labrador wciąż zachowuje się jak szczeniak, ale gdyby był człowiekiem, wchodziłby w wiek średni.
      Wspomniany wyżej Matt Kaeberlein rozpoczął niedawno Dog Aging Project, który jest otwarty dla wszystkich ras psów. Uczony chce dowiedzieć się, dlaczego niektóre psy chorują we wczesnym wieku i szybciej umierają, a inne cieszą się długim życiem bez chorób.
      Wiek psa (w latach)Odpowiednik wieku człowieka (w latach) 1 31,0 2 42,1 3 48,6 4 53,2 5 56,8 6 59,7 7 62,1 8 64,3 9 66,2 10 67,8 11 69,4 12 70,8 13 72,0 14 73,2 15 74,3 16 75,4 17 76,3 18 77,2 19 78,1 20 78,9 21 79,7 22 80,5
      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Związanym z wiekiem spadkom dopływu krwi do mózgu i pogorszeniu pamięci można zapobiegać za pomocą sirolimusa (rapamycyny), leku immunosupresyjnego stosowanego w transplantologii.
      Zespół z Centrum Nauk o Zdrowiu Uniwersytetu Teksańskiego w San Antonio zaczął aplikować szczurom sirolimus, gdy miały 19 miesięcy. Niewielką dawkę leku dodawano do jedzenia do momentu, aż gryzonie skończyły 34 miesiące i były w naprawdę podeszłym wieku.
      [...] Osobniki te osiągnęły sędziwy wiek, ale ich krążenie w mózgu było dokładnie takie samo, jak wtedy, gdy zaczynały terapię - opowiada prof. Veronica Galvan.
      Niepoddawane terapii szczury przechodziły zmiany obserwowane u starszych dorosłych: widoczne były spadki dopływu krwi do mózgu i pogorszenie pamięci. [...] Stare szczury leczone rapamycyną przypominały zaś szczury w średnim wieku z naszego studium - dodaje dr Candice Van Skike.
      Starzenie to najsilniejszy czynnik ryzyka demencji, ekscytująco jest więc stwierdzić, że rapamycyna, substancja znana z wydłużania życia, może też pomóc w zachowaniu integralności krążenia mózgowego i osiągów pamięciowych starszych dorosłych. Obecnie badamy bezpieczeństwo leku u osób z łagodnymi zaburzeniami poznawczymi (MCI) - wyjaśnia prof. Sudha Seshadri.
      Trzeba podkreślić, że przyglądano się zwykłemu starzeniu. Szczury doświadczały naturalnego spadku możliwości poznawczych, który nie był wymuszony żadnym procesem chorobowym - zaznacza Van Skike.
      Sirolimus należy do inhibitorów mTOR. Szlak mTOR odgrywa istotną rolę w kontroli cyklu komórkowego. Jego aktywacja bierze udział w patogenezie niektórych chorób, a także jak sądzą Amerykanie, napędza utratę synaps i przepływu krwi do mózgu w czasie starzenia. Z tego powodu długotrwałe podawanie rapamycyny szczurom skutkowało ograniczeniem deficytów uczenia i pamięci, zapobiegało zanikowi sprzężenia naczyniowo-nerwowego, a także korzystnie wpływało na perfuzję mózgową.

      « powrót do artykułu
×
×
  • Create New...