Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Za 14 lat człowiek wyląduje na Marsie?

Recommended Posts

Przed tygodniem informowaliśmy, że wiceprezydent Mike Pence domagał się, by do roku 2024 NASA przeprowadziła załogową misję na Księżyc. Teraz szef NASA, Jim Bridenstine, podczas spotkania z parlamentarzystami, stwierdził: chcemy do roku 2033 wykonać załogowe lądowanie na Marsie. Możemy przyspieszyć załogową misję na Marsa, przyspieszając załogową misję na Księżyc. Księżyc będzie testem, dodał.

Wielu ekspertów ma wątpliwości, czy NASA wywiąże się ze swoich zobowiązań, szczególnie biorąc pod uwagę opóźnienia w konstrukcji Space Launch System. Ponadto trzeba zdawać sobie sprawę, że misja na Marsa potrwa co najmniej 2 lata. Sam lot na Czerwoną Planetę zajmie 6 miesięcy. Na Księżyc astronauci mogą dostać się z w ciągu zaledwie 3 dni.

Podróż na Marsa możliwa jest tylko wówczas, gdy Czerwona Planeta znajduje się po tej samej stronie Słońca co Ziemia. Ma to miejsce co 26 miesięcy.

Budżet NASA na rok 2017 wyznaczał rok 2033 jako termin rozpoczęcia pierwszej załogowej misji na Marsa, jednak sama NASA nie mówiła dotychczas o konkretnym terminie, a jedynie o latach 30. obecnego stulecia.

Przed zorganizowaniem załogowej misji NASA chce nauczyć się wykorzystywać lód znajdujący się na Biegunie Południowym Marsa. Z lodu pozyskamy powietrze do oddychania, wodę do picia i paliwo, mówi Bridenstine. Naszym celem nie jest tylko zabranie człowieka na Marsa, ale udowodnienie, że ludzie mogą żyć i pracować na innych planetach, dodaje.

Demokrata Eddie Bernice Johnson, przewodniczący House Commitee on Science, Space and Technology poprosił Bridenstine'a, by ten przedstawił odpowiednie poprawki do budżetu NASA. Agencja ma je przedłożyć parlamentarzystom do 15 kwietnia.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Cytat

misja na Marsa potrwa co najmniej 2 lata. Sam lot na Czerwoną Planetę zajmie 6 miesięcy. Na Księżyc astronauci mogą dostać się z w ciągu zaledwie 3 dni.

Podróż na Marsa możliwa jest tylko wówczas, gdy Czerwona Planeta znajduje się po tej samej stronie Słońca co Ziemia. Ma to miejsce co 26 miesięcy.

Trochę to niejasno napisano. Wszak czas czekania na podróż na Ziemi nie wchodzi w czas podróży.

Czas podróży to:

1 podróż na Marsa - pół roku

2 czekanie na Ziemię (odpowiedni układ planet - taka astrologia)

3 powrót z Marsa.
I ten drugi jest istotny - a nie brzmi on "podróż na Marsa".

 

Edited by thikim

Share this post


Link to post
Share on other sites

Jedyna niejasność dotyczy słowa "misja", tutaj zostało użyte w znaczeniu "cała wyprawa tam i z powrotem" (hm, trochę po tolkienowsku mi się napisało). Pewnie rzeczywiście lepiej by pasowało np. "misja marsjańska" (bo bez słowa "na"), ale to też pozostawia niedosyt. Można by jeszcze spróbować "wyprawa marsjańska" ale to prawie ten sam poziom, co "misja". Może "przygoda marsjańska"? ;) Wtedy nie byłoby już wątpliwości, że chodzi o całość wyprawy. Tylko że nie spodobałoby się co najmniej hobbitom, a i wielu ludziom zapewne też :D. Rzeczywiście, jest jakaś trudność w znalezieniu odpowiedniego słowa :D Ona bierze się nie tylko z tego, że trzeba brać pod uwagę oba kierunki (na Marsa i powrót), ale jeszcze długo trwającą stacjonarną "odsiadkę" na Marsie...

Edited by darekp

Share this post


Link to post
Share on other sites
13 godzin temu, thikim napisał:

Trochę to niejasno napisano

meritum sprawy jest bardzo jasno wyjaśnione:

18 godzin temu, KopalniaWiedzy.pl napisał:

Mike Pence domagał się, by do roku 2024 NASA przeprowadziła załogową misję na Księżyc

 

18 godzin temu, KopalniaWiedzy.pl napisał:

Teraz szef NASA, Jim Bridenstine, podczas spotkania z parlamentarzystami, stwierdził: chcemy do roku 2033 wykonać załogowe lądowanie na Marsie

Jest rozkaz,termin i do dzieła, jak w wojsku.

 Żeby nie zawieść Mike Pence pewnie polecą choćby na drzwiach od stodoły :D

I jak w "dzień świstaka" wrócimy do 1969r z ta różnicą że transmisję okraszoną dużą ilością reklam obejrzymy w kolorze na płaskich telewizorach :) 

 

 

Share this post


Link to post
Share on other sites
Guest kremien

Coz, problem w tym, ze to tylko po to, zeby zaspokoic ego politykow i byc technologicznie o krok, dwa przed innymi nacjami. Wyglada, ze czuja sie po prostu urazeni postepami chinskiego programu kosmicznego. Szkoda, ze nawet przez mysl nikomu nie przeszlo, zeby dzialac razem jako ludzkosc, to bylby chyba wiekszy sukces niz samo ladowanie na Marsie...

Share this post


Link to post
Share on other sites

Po Waszych odpowiedziach wnoszę że jednak się myliłem.
Gdyby artykuł był "trochę niejasno napisany" to byście zrozumieli o czym napisałem.

Jako że kompletnie nie zrozumieliście to znaczy że artykuł jest dużo bardziej niejasno napisany niż w pierwszej chwili sądziłem.

14 godzin temu, darekp napisał:

Jedyna niejasność dotyczy słowa "misja", tutaj zostało użyte w znaczeniu "cała wyprawa tam i z powrotem"

Spróbuję trochę naprowadzić.

Czy w skład "całej wyprawy tam i z powrotem" wchodzi czas oczekiwania na Ziemi na odpowiedni moment do rozpoczęcia lotu? :D Retorycznie pytam. 

Edited by thikim
  • Like (+1) 1

Share this post


Link to post
Share on other sites

O tym jak będzie przebiegać misja zdecyduje właściwa komisja ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wydaje się, że tak niedawno emocjonowaliśmy się lądowaniem łazika Curiosity oglądając „7 minut horroru”. Tymczasem łazik rozpoczął właśnie 3000. dobę (sol) marsjańską. To 3082 ziemskich dób.  Curiosity od ponad 8 lat bada krater Gale, a wkrótce zyska towarzysza, gdyż w lutym na Czerwonej Planecie wyląduje łazik Perseverance.
      Misja Mars Science Laboratory, w ramach której wystrzelono Curiosity, wystartowała 26 listopada 2011 roku, a lądowanie Curiosity miało miejsce 5 sierpnia 2012. łazik waży 899 kilogramów i jest najcięższym pojazdem, jaki ludzkość bezpiecznie posadowiła na Marsie.
      Curiosity bada krater Gale, analizuje próbki gruntu, skał i atmosfery. Dzięki swoim pokaźnym rozmiarom mógł zabrać na pokład 10 instrumentów naukowych, w skład których wchodzi 17 aparatów. Dotychczas łazik dostarczył nam niemal 750 000 fotografii. Misja Mars Science Laboratory to ważny krok w eksploracji marsa, gdyż dzięki niej wykazano, że potrafimy bezpiecznie osadzić na powierzchni planety duży i ciężki łazik, jesteśmy w stanie wykonać bardziej precyzyjne lądowanie niż kiedykolwiek wcześniej, a tak duży łazik jest w stanie przebyć znaczne odległości (dotychczas przejechał on 23,83 km), wykonując przy tym liczne badania.
      Curiosity będzie zapewne obchodził wiele rocznic na Marsie, gdyż w 2012 roku misję łazika przedłużono bezterminowo. Nadzieję taką daje historia łazika Opportunity, który pracował na Marsie przez 5111 soli (ponad 14 ziemskich lat), przebywając w tym czasie ponad 45 kilometrów.
      Obecnie na Marsie i w jego sąsiedztwie prowadzonych jest kilka misji. Najstarsza z nich to wystrzelona w kwietniu 2001 roku misja orbitera Mars Odyssey (NASA). Wokół Czerwonej Planety wciąż krąży Mars Express Europejskiej Agencji Kosmicznej, który wystartował z Ziemi w czerwcu 2003 roku. Kolejnym działającym sztucznym satelitą Marsa jest Mars Reconnaissance Orbiter (NASA), wystrzelony w sierpniu 2005 roku. Swojego satelitę o nazwie Mangalyaan, umieściła też indyjska agencja kosmiczna ISRO. Jej pojazd został wystrzelony w listopadzie 2013 roku. To najtańsza marsjańska misja w historii. Również w 2013 roku wystartował orbiter MAVEN NASA. Trzy lata później rozpoczęła się wspólna misja Europejskiej Agencji Kosmicznej i Roskosmosu. W jej ramach na orbicie Marsa znalazł się ExoMars Trace Gas Orbiter.
      Przez całe lata po lądowaniu Curiosity ludzkość nie wysłała niczego na powierzchnię Marsa. Dopiero w 2018 roku trafił tam lądownik NASA InSight.
      Obecnie w kierunku Czerwonej Planety podążają aż trzy misje. Najpierw 19 lipca 2020 roku ruszyła Emirates Mars Mission Zjednoczonych Emiratów Arabskich. W lutym bieżącego roku ma ona umieścić sztucznego satelitę na orbicie Marsa. Kilka dni później, 23 lipca 2020, misję Tianwen-1 wysłali Chińczycy. Jej plan zakłada, że pomiędzy 11 a 24 lutego 2021 na orbicie Marsa pojawi się kolejny satelita, a 23 kwietnia 2021 na powierzchni wyląduje łazik. W drodze na Mara są też wysłane przez NASA łazik Perseverance i śmigłowiec Ingenuity. Ich lądowanie przewidziano na 18 lutego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Za niecały tydzień, 17 stycznia, NASA odpali najpotężniejszą rakietę, jaka kiedykolwiek została uruchomiona na Ziemi. Na ten dzień przewidziano pierwszy gorący test Space Launch System (SLS). To długo oczekiwana i bardzo opóźniona względem pierwotnych planów rakieta, którą NASA chce używać w niekomercyjnych misjach załogowych. Stanowi ona centralny element planów NASA zakładających powrót człowieka na Księżyc.
      Ten tzw. gorący rozruch rakiety to ostatni z ośmiu testów serii Green Run. Siódmy test Green Run miał miejsce 20 grudnia ubiegłego roku. Wtedy też po raz pierwszy do silników RS-25 podłączony było kriogeniczne płynne paliwo. Podczas tego testu sprawdzano wytrzymałość całej struktury, testowano oprogramowanie, komputery i awionikę, przetestowano wszystkie elementy systemu. Głównym elementem było zaś sprawdzenie całego systemu przepływu paliwa. W jego trakcie bez problemu wpompowano do zbiorników i usunięto z nich 265 000 litrów paliwa. Test zakończył się kilka minut przed czasem z powodu zamknięcia się zaworów. Późniejsze analizy wykazały, że do zamknięcia zaworów doszło na ułamki sekundy zbyt wcześnie, w związku z czym uruchomiły się wszystkie odpowiednie systemy zatrzymujące test. Po analizie czas zamknięcia zaworów poprawiono i obecnie całość gotowa jest do ostatniego testu z serii Green Run.
      Wcześniejsze, przeprowadzone z powodzeniem, elementy Green Run to: test 1 – symulacja sił działających na główny stopień rakiety podczas startu, test 2 – sprawdzenie awioniki, test 3 – symulacja potencjalnych problemów z systemem testowym i sprawdzenie czy w razie ich wystąpienia, wszystkie elementy zostaną prawidłowo wyłączone, test 4 – test głównych systemów napędowych łączących się z silnikami, test 5 – sprawdzono system kontroli dysz silnika i związane z nim elementy hydrauliczne, test 6 – symulacja sekwencji startowej w celu upewnienia się, że jest ona prawidłowa i każdy jej element odbywa się w przewidzianym czasie.
      Teraz nadszedł czas na uruchomienie najpotężniejszej rakiety w historii.
      Tutaj należy dodać kilka słów wyjaśnienia. Gdy NASA przed kilkoma laty poinformowała, że SLS będzie najpotężniejszą rakietą w dziejach, gdyż będzie w stanie wynieść na niską orbitę okołoziemską (LEO) ładunek o masie 130 ton, natychmiast pojawiły się głosy, że słynna Saturn V, która zawiozła astronautów na Księżyc, była w stanie wynieść 140 ton na LEO.
      NASA wyjaśniła, że Saturn V wynosił na LEO 140 ton włącznie z masą własną i masą paliwa. Tymczasem 130 ton SLS to masa samego ładunku.
      NASA doprecyzowała więc używaną terminologię i obecnie mówiąc o możliwościach rakiety odnosi się wyłącznie do ładunku, dodatkowego obciążenia, które może ona ze sobą zabrać. W przypadku SLS wynosi ono 130 ton na LEO, w przypadku zaś Saturna V było to 122,5 tony na LEO. Na potrzeby porównania z dawniej używaną terminologią specjaliści z NASA ukuli nieformalny termin „masa wystrzelona”, który obejmuje rakietę z paliwem oraz ładunkiem. Dla Saturna V „masa wystrzelona” na LEO wynosiła wspomniane 140 ton, dla SLS jest to zaś 157 ton.
      NASA zastrzega jednak, że nie są to liczby ostateczne, gdyż SLS nie jest projektem zamkniętym, może ewoluować. Ponadto system ten nie powstał z myślą o wynoszeniu ładunków na orbitę okołoziemską. Ma on zawieźć astronautów na Marsa, zatem jego możliwości transportowe na LEO nie są najważniejszym parametrem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naturalne jaskinie to ważne cele przyszłych misji NASA. Będą one miejscem poszukiwań dawnego oraz obecnego życia w kosmosie, a także staną się schronieniem dla ludzi, mówi Ali Agha z Team CoSTAR, który rozwija roboty wyspecjalizowane w eksploracji jaskiń. Jak wcześniej informowaliśmy, na Księżycu istnieją gigantyczne jaskinie, w których mogą powstać bazy.
      Team CoSTAR, w skład którego wchodzą specjaliści z Jet Propulsion Laboratory i California Instute of Technology to jednym z zespołów, który przygotowuje się do wzięcia udziału w tegorocznych zawodach SubT Challenge organizowanych przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
      CoSTAR wygrał ubiegłoroczną edycję SubT Urban Circuit, w ramach której roboty eksplorowały tunele stworzone przez człowieka. Teraz coś na coś trudniejszego i mniej przewidywalnego. Czas na naturalne jaskinie i tunele.
      Specjaliści z CoSTAR i ich roboty pracują w jaskiniach w Lava Beds National Monument w północnej Kalifornii. Jaskiniowa edycja Subterranean Challenge jest dla nas szczególnie interesująca, gdyż lokalizacja taka bardzo dobrze pasuje do długoterminowych planów NASA. Chce ona eksplorować jaskinie na Księżycu i Marsie, w szczególności jaskinie lawowe, które powstały w wyniku przepływu lawy. Wiemy, że takie jaskinie istnieją na innych ciałach niebieskich. Kierowany przez Jen Blank zespół z NASA prowadził już testy w jaskiniach lawowych i wybrał Lava Beds National Monument jako świetny przykład jaskiń podobnych do tych z Marsa. Miejsce to stawia przed nami bardzo zróżnicowane wyzwania. Jest tam ponad 800 jaskiń, mówi Ben Morrell z CoSTAR.
      Eksperci zwracają uwagę, że istnieje bardzo duża różnica w dostępności pomiędzy tunelami stworzonymi przez człowieka, a naturalnymi jaskiniami. Z jednej strony struktury zbudowane ludzką ręką są bardziej rozwinięte w linii pionowej, są wielopiętrowe, z wieloma poziomami, schodami, przypominają labirynt. Jaskinie natomiast charakteryzuje bardzo trudny teren, który stanowi poważne wyzwanie nawet dla ludzi. Są one trudniej dostępne, z ich eksploracją wiąże się większe ryzyko, są znacznie bardziej wymagające dla systemów unikania kolizji stosowanych w robotach.
      Agha i Morrell mówią, że jaskinie lawowe ich zaskoczyły. Okazały się znacznie trudniejsze niż sądzili. Stromizny stanowią duże wyzwanie dla robotów. Powierzchnie tych jaskiń są niezwykle przyczepne. To akurat korzystne dla robotów wyposażonych w nogi, jednak roboty na kołach miały tam poważne problemy. Przed urządzeniami stoją tam zupełnie inne wyzwania. Zamiast rozpoznawania schodów i urządzeń, co było im potrzebne w tunelach budowanych przez człowieka, muszą radzić sobie np. z nagłymi spadkami czy obniżającym się terenem.
      Miejskie tunele są dobrze rozplanowane, nachylone pod wygodnymi kątami, z odpowiednimi zakrętami, prostymi korytarzami i przejściami. Można się tam spodziewać równego podłoża, wiele rzeczy można z góry zaplanować. W przypadku jaskiń wielu rzeczy nie można przewidzieć.
      Celem SubT Challenge oraz zespołu CoSTAR jest stworzenie w pełni autonomicznych robotów do eksploracji jaskiń. I cel ten jest coraz bliżej.
      Byliśmy bardzo szczęśliwi, gdy podczas jednego z naszych testów robot Spot [Boston Dynamics – red.] w pełni autonomicznie przebył całą jaskinię. Pełna autonomia to cel, nad którym pracujemy zarówno na potrzeby NASA jak i zawodów, więc pokazanie, że to możliwe jest wielkim sukcesem, mówi Morrell. Innym wielkim sukcesem było bardzo łatwe przełożenie wirtualnego środowiska, takiego jak systemy planowania, systemy operacyjne i autonomiczne na rzeczywiste zachowanie się robota, dodaje. Jak jednak przyznaje, zanotowano również porażki. Roboty wyposażone w koła miały problemy w jaskiniach lawowych. Dochodziło do zużycia podzespołów oraz poważnych awarii sprzętu. Ze względu na epidemię trudno było sobie z nimi poradzić w miejscu testów, stwierdza ekspert.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińska sonda Chang'e 5 wystartowała z powierzchni Księżyca i wiezie na Ziemię pobrane przez siebie próbki gleby. To pierwsza taka misja od dziesięcioleci. Ostatnią, która przywiozła z Księżyca próbki była radziecka Łuna 24 w 1976 roku.
      Lądownik wystartował z powierzchni Księżyca wczoraj o godzinie 16.10 czasu polskiego. Sześć minut później osiągnął orbitę Księżyca, gdzie ma się spotkać z oczekującym na niego pojazdem powrotnym. Próbki zostaną następnie przeniesione do kapsuły lądującej.
      Najbardziej krytycznym momentem misji będzie zaplanowane na sobotę spotkanie i połączenie się lądownika z pojazdem. Całość musi odbyć się automatycznie, gdyż oba pojazdy dzieli od Ziemi 380 000 kilometrów, więc opóźnienia w przesyłaniu danych uniemożliwiają kontrolowanie operacji w czasie rzeczywistym.
      Operacja dokowania ma zająć około 3,5 godzin i rozpocznie się, gdy pojazdy zbliżą się do siebie na orbicie. Jeśli się ona uda, rozpocznie się kolejny etap misji – powrót na Ziemię. Jednak nie nastąpi on od razu. Chang'e 5 musi poczekać kilka dni na orbicie okołoziemskiej, na otwarcie się okienka, kiedy to będzie mógł uruchomić silniki i ruszyć w kierunku naszej planety. To właśnie precyzyjne zgranie wszystkiego w czasie umożliwi wylądowanie w wybranym miejscu w Mongolii Wewnętrznej. Miejscu, w którym lądowali już chińscy astronauci podróżujący w pojeździe Shenzhou.
      Cała podróż powrotna, przed próbą wejścia w atmosferę Ziemi, potrwa 112 godzin. Jako, że pojazdy powracające z Księżyca poruszają się szybciej, niż te powracające z Międzynarodowej Stacji Kosmicznej, Chang'e 5 najpierw odbije się od atmosfery, co pomoże spowolnić pojazd przed ostatecznym zaurzeniem się w atmosferze.
      Misja Chang'e 5 rozpoczęła się 23 listopada. Cztery i pół dnia później pojazd znalazł się na orbicie Księżyca. Lądowanie na Srebrnym Globie odbyło się 1 grudnia. Próbki zostały zebrane w ciągu 19 godzin.
      Lądownik waży kilkaset kilogramów i musiał osiągnąć prędkość 6011 km/h (1,67 km/s), by dostać się na orbitę Księżyca. Teraz oczekuje na orbicie na spotkanie z pojazdem powrotnym. Zsynchronizowanie orbit obu pojazdów na tyle, by można było rozpocząć zbliżanie i dokowanie zajmie 2 dni.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...