Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wiemy, ile światła wyemitowały gwiazdy w historii wszechświata

Recommended Posts

W Science ukazał się artykuł, z którego dowiadujemy się, jak dużo światła wyemitowały wszystkie gwiazdy w całej historii obserwowalnego wszechświata. Obliczeń dokonał astrofizyk Marco Ajello i jego zespół z Clemson College of Science, którzy wykorzystali dane z Germi Gamma-ray Space Telescope.

Pierwsze gwiazdy zaczęły powstawać kilkaset milionów lat po powstaniu wszechświata. Obecnie istnieje około 2 bilionów galaktyk i biliony bilionów gwiazd. Dane z teleskopu Fermi pozwoliły nam na zmierzenie całego światła gwiazd, jakie zostało wyemitowane w dziejach wszechświata, mówi Ajello.

Z wyliczeń wynika, że dotychczas gwiazdy wyemitowały 4x1084 fotonów.

Warto też zauważyć, że pomimo tej olbrzymiej liczby fotonów, to całe światło, jakie dociera do Ziemi – z wyjątkiem światła ze Słońca i naszej galaktyki – jest niezwykle słabe. Odpowiada ono światłu z 60-watowej żarówki, jakie w zupełnej ciemności dotarłoby do nas z odległości około 4 kilometrów. Dzieje się tak ze względu na olbrzymi rozmiar wszechświata.

Fermi Gamma-ray Space Telescope został wystrzelony w czerwcu 2008 roku. Obserwuje on promieniowanie gamma i jego interakcję z pozagalaktycznym promieniowaniem tła (EBL). EBL to rodzaj mgły złożonej z całego ultrafioletowego, podczerwonego i widzialnego światła emitowanego przez gwiazdy i sąsiadujący z nimi pył. Profesor Ajello i jego koledzy przeanalizowali dane z 739 emitujących promieniowanie gamma blazarów zebrane przez Fermi w ciągu 9 lat.

Fotony promieniowania gamma wędrujące przez mgłę EBL są z dużym prawdopodobieństwem absorbowane. Mierząc, jak wiele fotonów zostało zaabsorbowanych, byliśmy w stanie zmierzyć, jak gruba jest mgła i zmierzyć, jako funkcję w czasie, jak wiele światła się w niej znajduje, mówi Ajello. Wykorzystując blazary znajdujące się w różnej odległości od nas zmierzyliśmy całkowite światło w różnych odcinkach czasu. Zmierzyliśmy całkowite światło dla każdej z epok: miliard lat temu, dwa miliardy lat temu i tak dalej i tak dalej, aż do czasu uformowania się pierwszych gwiazd. To pozwoliło nam zrekonstruować całkowite EBL i określić historię formowania się gwiazd w sposób bardziej efektywny, niż robiono to dotychczas", dodaje współpracownik Ajello, Vaidehi Paliya.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Fotony jednak w historii wszechświata emitowały nie tylko gwiazdy.

To raz.
A dwa jest takie że był okres anihilacji niemal wszystkiego - czyli niemal wszystko zmieniło się w światło. Gdzie ono jest? :)

Share this post


Link to post
Share on other sites
47 minut temu, thikim napisał:

A dwa jest takie że był okres anihilacji niemal wszystkiego - czyli niemal wszystko zmieniło się w światło. Gdzie ono jest?

Oddala się z prędkością c. Trudno policzyć ile tego i gdzie jest. Na moje oko ostatni raz widziane jak przekraczały granice naszego stożka. Oczywiście widziane przez kogoś poza naszym stożkiem.

Edited by Jajcenty

Share this post


Link to post
Share on other sites

Czy jako światło rozumieć mam całe spektrum promieniowania, czy tylko jego wąski wycinek? Bez dokładnego ustalenia "granic" światła, to można sobie napisać cokolwiek.

Share this post


Link to post
Share on other sites

Ale to rodzi szereg problemów :)
Anihilacji NIE ULEGŁ jeden na 10 miliardów barionów.

Czyli anihilacji uległo 2 x 9 999 999 999. Czyli w zasadzie: 20 000 000 000.

A 1 nie :)
Z tym że produktem anihilacji są od nowa kwarki i antykwarki i fotony.

Share this post


Link to post
Share on other sites
3 godziny temu, thikim napisał:

Gdzie ono jest?

Pozostałość po nim to mikrofalowe promieniowanie tła. Jest tego parę rzędów wielkości więcej niż fotonów, które wyemitowały gwiazdy.

Share this post


Link to post
Share on other sites
3 godziny temu, Jajcenty napisał:

Oddala się z prędkością c. Trudno policzyć ile tego i gdzie jest. Na moje oko ostatni raz widziane jak przekraczały granice naszego stożka. Oczywiście widziane przez kogoś poza naszym stożkiem.

No właśnie!

Czy obliczenia opisane w artykule dotyczą tylko obserwowanej przez nas przestrzeni, czy całego wszechświata?

Share this post


Link to post
Share on other sites
W dniu 30.11.2018 o 14:04, KopalniaWiedzy.pl napisał:

w całej historii obserwowalnego wszechświata

 

Share this post


Link to post
Share on other sites
3 godziny temu, Szedar napisał:

Jest tego parę rzędów wielkości więcej niż fotonów, które wyemitowały gwiazdy.


Masz jakieś konkretne dane na temat tych paru rzędów wielkości? Czy to tylko domniemanie sprzeczne trochę z tym że na niebie w wielu zakresach promieniowania widzimy jednak gwiazdy i Słońce a nie mikrofalowe promieniowanie tła.

Share this post


Link to post
Share on other sites

To nie jest domniemanie, a wynik obserwacji i prostego oszacowania; mierzymy w końcu strumień CMB. Możesz zresztą zrobić to prościej, czyli wiedząc, że jest to podręcznikowo termiczne promieniowanie o T jakieś 2.7 K. Wystarczy skorzystać z prawa Stefana-Boltzmanna i podzielić przez średnią energię fotonu. Wyjdzie, że na jeden foton "gwiazdowy" przypada ok. 105 fotonów CMB. Nie ma tu żadnej sprzeczności. Wystarczy sobie uświadomić ile razy mniejszą energię ma taki foton od fotonu "gwiazdowego".

P.S. Zgodność obserwacji CMB z modelem Wielkiego Wybuchu doczekała się dawno temu nagrody Nobla.

Znalazłem jeszcze w pewnych notkach oszacowanie gęstości fotonów CMB na 400 w cm3.

Edited by Szedar

Share this post


Link to post
Share on other sites

Można jeszcze prościej: rozkład Plancka podzielony przez energię fotonu i scałkowany daje N = 20.3 T3 (w cm-3), co można zastosować wprost, ponieważ CMB jest z grubsza promieniowaniem izotropowym - świeci z każdego punktu na niebie.

Edited by Szedar

Share this post


Link to post
Share on other sites
W dniu 1.12.2018 o 20:30, Szedar napisał:

Można jeszcze prościej: rozkład Plancka podzielony przez energię fotonu i scałkowany daje N = 20.3 T3 (w cm-3), co można zastosować wprost, ponieważ CMB jest z grubsza promieniowaniem izotropowym - świeci z każdego punktu na niebie.

Wymiękłam ;)
 

Share this post


Link to post
Share on other sites

20,3*2,73 to właśnie ok. 400, ale jeśli ktoś woli, to:

https://en.wikipedia.org/wiki/Cosmic_microwave_background

Cytat

Most of the radiation energy in the universe is in the cosmic microwave background [...] Density of energy for CMB is 0.25 eV/cm3[17] (4.005×10−14 J/m3) or (400–500 photons/cm3[18]).

 

Założę się, że każdy pewnie widział CMB:

http://nighstars.pl/2015/10/17/szum-w-radiu-i-tv-skad-pochodzi/

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Niemieccy fizycy z Uniwersytetu im. Goethego we Frankfurcie dokonali najkrótszego w historii pomiaru czasu. We współpracy z naukowcami z DESY (Niemiecki Synchrotron Elektronowy) w Hamburgu i Instytutu Fritza Habera w Berlinie zmierzyli czas przejścia światła przez molekułę. Dokonany pomiar mieści się w przedziale zeptosekund.
      W 1999 roku egipski chemik Ahmed Zewail otrzymał Nagrodę Nobla za zmierzenie prędkości, z jaką molekuły zmieniają kształt. Wykorzystując laser stwierdził, że tworzenie się i rozpadanie wiązań chemicznych odbywa się w ciągu femtosekund. Jedna femtosekunda to zaś 0,000000000000001 sekundy (10-15 s).
      Teraz zespół profesora Reinharda Dörnera po raz pierwszy w historii dokonał pomiarów odcinków czasu, które są o cały rząd wielkości krótsze od femtosekundy. Niemcy zmierzyli, ile czasu zajmuje fotonowi przejście przez molekułę wodoru. Okazało się, że dla średniej długości wiązania molekuły czas ten wynosi 247 zeptosekund. To najkrótszy odcinek czasu, jaki kiedykolwiek udało się zmierzyć. Jedna zeptosekunda to 10-21 sekundy.
      Pomiarów dokonano wykorzystując molekułę H2, którą wzbudzono w akceleratorze za pomocą promieniowania rentgenowskiego. Energia promieni została dobrana tak, by pojedynczy foton wystarczył do wyrzucenia obu elektronów z molekuły.
      Elektrony zachowują się jednocześnie jak cząstki i fale. Wyrzucenie pierwszego z nich skutkowało pojawieniem się fali, po chwili zaś dołączyła fala drugiego elektronu. Z kolei foton zachowywał się jak płaski kamyk, który dwukrotnie skakał po falach.
      Jako, że znaliśmy orientację przestrzenną molekuły wodoru, wykorzystaliśmy interferencję fal obu elektronów, by dokładnie obliczyć, kiedy foton dotarł do pierwszego, a kiedy do drugiego atomu wodoru. Okazało się, że czas, jaki zajęło fotonowi przejście pomiędzy atomami, wynosi do 247 zeptosekund, w zależności od tego, jak daleko z punktu widzenia fotonu znajdowały się oba atomy, wyjaśnia Sven Grudmann.
      Profesor Reinhard Dörner dodaje: Po raz pierwszy udało się zaobserwować, że elektrony w molekule nie reagują na światło w tym samym czasie. Opóźnienie ma miejsce, gdyż informacja w molekule rozprzestrzenia się z prędkością światła. Dzięki tym badaniom możemy udoskonalić naszą technologię i wykorzystać ją do innych badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii zaobserwowano wpływ fluktuacji kwantowych na obiekt w skali człowieka. Naukowcy pracujący przy detektorze fal grawitacyjnych LIGO informują na łamach Nature o zarejestrowaniu poruszenia się pod wpływem fluktuacji kwantowych 40-kilogramowych luster wykorzystywanych w obserwatorium.
      Zespół naukowy, który pracował pod kierunkiem specjalistów z MIT, a w skład którego wchodzili też uczeni z Caltechu, przeprowadził swoje badania w LIGO Livingston Observatory w Louizjanie.
      Okazało się, że szum kwantowy wystarczy, by przemieścić lustra o 10-20 metra. Takie przesunięcie jest zgodne z teoretycznymi przewidywaniami mechaniki kwantowej. Dopiero jednak teraz udało się to zjawisko zmierzyć. Wykonanie tak dokładnych pomiarów było możliwe dzięki zastosowaniu kwantowego „ściskacza światła”. Wczoraj informowaliśmy o ważnym przełomie dokonanym na polu budowy takich urządzeń.
      Dzięki „ściskaczowi” naukowcy byli w stanie zredukować szum kwantowy, dzięki czemu określili, jak bardzo wpływał on na ruch luster.
      To naprawdę niezwykłe, że ściśnięcie światła może zmniejszyć ruch luster, które ważą tyle, co nieduży człowiek. Przy tych częstotliwościach istnieje wiele źródeł szumu, które powodują ruch luster. To naprawdę duże osiągnięcie, że mogliśmy obserwować wpływ właśnie tego źródła, cieszy się współautorka badań, Sheila Dwyer, która pracuje przy detektorze LIGO w Hanford.
      Profesor fizyki Rana Adhikari wyjaśnia, że ściśnięcie światła zmniejsza ilość szumu kwantowego w promieniu lasera poprzez przesunięcie go z fazy do amplitudy światła. To amplituda światła porusza lustra. Wykorzystaliśmy tę cechę natury, która pozwoliła nam przesunąć szum w obszar, który nas nie interesuje.
      Ściśnięcie światła i zredukowanie tym samym szumu kwantowego naukowcy mogli dokonać pomiarów poza standardowy limit kwantowy. W przyszłości technika ta pozwoli LIGO na wykrywanie słabszych, odleglejszych źródeł fal grawitacyjnych.
      W jeszcze dalszej przyszłości może to zostać wykorzystane do udoskonalenia smartfonów, autonomicznych samochodów i innych technologii, zapowiada Adhikari.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Ben-Guriona oraz Instytutu Weizmanna poinformowali o opracowaniu techniki podsłuchu z... drgań żarówki znajdującej się w pokoju, w której prowadzona jest rozmowa. Wywołane dźwiękiem zmiany ciśnienia powietrza na powierzchni wiszącej żarówki powodują jej niewielkie drgania, które można wykorzystać do podsłuchu w czasie rzeczywistym, stwierdzili naukowcy. Metoda została opisana w najnowszym numerze Science i zostanie zaprezentowana podczas wirtualnej konferencji Black Hat USA 2020, która odbędzie się w sierpniu.
      Podobne metody podsłuchu były już opisywane. Jednak wiele takich metod albo nie działa w czasie rzeczywistym, albo nie jest pasywnych, co oznacza, że konieczne jest wykorzystanie np. światła lasera, które może nas zdradzić. Metoda „lamphone” jest i pasywna i działa w czasie rzeczywistym.
      Ben Nassi i jego koledzy prowadzili swoje eksperymenty za pomocą teleskopów (o średnicach luster 10, 20 i 35 centymetrów), które umieścili w odległości 25 metrów od „podsłuchiwanej” żarówki. W zestawie do podsłuchu znalazł się jeszcze elektrooptyczny czujnik Thorlabs PDA100A2, a celem była 12-watowa żarówka LED.
      Żarówka wibrowała w reakcji na dźwięki w pomieszczeniu. Wibracje te znajdowały swoje odzwierciedlenie w zmianach sygnału świetlnego rejestrowanego przez czujnik umieszczony przy okularze teleskopu. Zbierane sygnały zmieniane są z analogowych na cyfrowe, a następnie przetwarzane przez oprogramowanie odfiltrowujące szumy. Jest ono wspomagane przez Google Cloud Speech API rozpoznające ludzką mowę oraz aplikacje takie jak Shazam czy SoundHound, których zadaniem jest rozpoznawanie utworów muzycznych.
      Podczas swoich eksperymentów naukowcy byli w stanie zebrać różne dźwięki w podsłuchiwanego pomieszczenia, w tym rozpoznać piosenki Let it Be Beatlesów czy Clocks Coldplay oraz przemówienie prezydenta Trumpa We will make America great again.
      Autorzy nowej techniki podsłuchu mówią, że sprawdzi się ona na odległość większą niż 25 metrów. Należy użyć większego teleskopu lub innego konwertera analogowo-cyfrowego.
      Przeciwdziałać podsłuchowi można przyciemniając światło, gdyż metoda ta tym słabiej działa im mniej światła przechwytuje czujnik, lub używając cięższej żarówki, która mniej drga pod wpływem dźwięku.
      Zaprezentowany przez Izraelczyków sposób podsłuchu ma sporo ograniczeń. Przede wszystkim teleskop musi widzieć bezpośrednio światło emitowane z żarówki. Można więc zgasić światło czy zaciągnąć kotary. Jednak mimo tych niedoskonałości powyższa praca pokazuje, że z jednej strony warto rozważyć możliwość wykorzystania różnych źródeł światła w technikach podsłuchowych, z drugiej zaś warto zastanowić się, w jaki sposób można przed takim podsłuchem się chronić.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W elektronice konsumenckiej kropki kwantowe wykorzystywane są np. w telewizorach, gdzie znacząco poprawiają odwzorowanie kolorów. Używa się ich, gdy telewizory LCD wymagają tylnego podświetlenia. Standardowo do podświetlenia używa się białych LED-ów, a kolory uzyskuje dzięki filtrom. Zanim pojawiły się kropki kwantowe znaczna część światła nie docierała do ekranu, była blokowana przez filtry. Zastosowanie kropek kwantowych w LCD wszystko zmieniło.
      Obecnie telewizory QD LCD wykorzystują niebieskie LED-y jako źródło światła, a kropki kwantowe, dzięki efektom kwantowym, zmieniają to światło w czerwone i zielone. Do filtrów docierają wówczas wyłącznie trzy składowe kolorów – czerwony, zielony i niebieski – a nie całe spektrum światła białego, to znacznie mniej światła jest blokowane i marnowane dzięki czemu otrzymujemy jaśniejsze, bardziej nasycone i lepiej odwzorowane kolory.
      Okazuje się, że ta sama technologia może być przydatna przy uprawie roślin. Wykazują one bowiem preferencje odnośnie kolorów światła. Wiemy na przykład, że nie absorbują zbyt dużo światła zielonego. Odbijają je, dlatego wydają się zielone. Niedawne badania wykazały, że różne rośliny są dostosowane do różnych długości fali światła. W Holandii niektórzy plantatorzy już od dłuższego czasu eksperymentują i uprawiają pomidory pod światłem w kolorze fuksji, róże ponoć lubią bardziej białe światło, a papryka żółte.
      W 2016 roku Hunter McDaniel i jego koledzy z UbiQD zaczęli zastanawiać się nad wykorzystaniem kropek kwantowych w hodowli roślin. Biorąc bowiem pod uwagę fakt, że kropki kwantowe pozwalają na bardzo precyzyjne dobranie długości fali światła oraz fakt, że światło nie jest blokowane, więc i nie mamy tutaj dużych strat energii, takie rozwiązanie mogłoby się sprawdzić.
      Wcześniej McDaniel był badaczem w Los Alamos National Laboratory. Pracował tam właśnie nad kropkami kwantowymi i tam zdał sobie sprawę, że toksyczny kadm, wykorzystywany w kropkach, można zastąpić siarczkiem miedziowo-indowym. W 2014 roku założył UbiQD by skomercjalizować opracowaną przez siebie technologie.
      Na początku naukowiec wyobrażał sobie kilka pól zastosowania dla nowych kropek kwantowych. I wtedy wpadliśmy na pomysł wykorzystania ich w rolnictwie. Ten rynek ma gigantyczny potencjał. Może on wchłonąć nawet ponad miliard metrów kwadratowych powierzchni kropek kwantowych rocznie.
      Przedstawiciele UbiQD postanowili produkować długie płachty zawierające kropki kwantowe, które byłyby podwieszane pod dachami szklarni i zmieniałyby spektrum wpadającego światła słonecznego. Pierwsze takie płachty dawały światło pomarańczowe o długości fali około 600 nm. Badacze testowali je na badawczych uprawach sałaty na University of Arizona. Z czasem zaczęto prowadzić testy na większą skalę. Inne płachty, dające inne kolory światła, sprawdzano w Nowym Meksyku na pomidorach, ogórkach i ziołach, w Holandii badano wpływ światła z kropek kwantowych na uprawy truskawek i pomidorów, w Kolorado do testów wybrano konopie przemysłowe, w Kalifornii i Oregonie konopie indyjskie, a w Kanadzie ogórki i pomidory. UbiQD nawiązała tez współpracę w firmą Nanosys, która od 2013 roku produkuje kropki kwantowe w ilościach przemysłowych na potrzeby producentów telewizorów.
      Niedawno UbiQD rozpoczęła komercyjną sprzedaż swoich płacht z kropkami kwantowymi. Mogą je kupić producenci z Azji, Europy i USA. Obecnie na skalę przemysłową produkowane są jedynie płachty dające światło pomarańczowe, jednak trwają badania nad innymi kolorami.
      UbiQD otrzymała też kilka grantów od NASA. Za te pieniądze ma stworzyć produkt do użycia w warunkach kosmicznych. Tego typu płachta powinna blokować szkodliwe dla roślin promieniowanie ultrafioletowe i zamieniać je w światło o takiej długości, by rośliny mogły przeprowadzać fotosyntezę.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do fotosyntezy potrzebne jest nie tylko światło, ale i ciepło - dowodzą naukowcy z Lublina. Rośliny odzyskują część ciepła, które powstaje w fotosyntezie, i używają go ponownie do zasilania reakcji napędzanych światłem, w tym – do produkcji tlenu – tłumaczy prof. Wiesław Gruszecki.
      Naukowcy mają nadzieję, że wiedzę dotyczącą gospodarowania strumieniami energii w aparacie fotosyntetycznym roślin uda się wykorzystać np. w rolnictwie, by zwiększyć plony.
      Energia niezbędna do podtrzymywania życia na Ziemi pochodzi z promieniowania słonecznego. Wykorzystanie tej energii możliwe jest dzięki fotosyntezie. W ramach fotosyntezy dochodzi do przetwarzania energii światła na energię wiązań chemicznych, która może być wykorzystana w reakcjach biochemicznych. W procesie tym rośliny rozkładają też wodę, wydzielając do atmosfery tlen, potrzebny nam do oddychania.
      Do tej pory sądzono, że w fotosyntezie rośliny korzystają tylko z kwantów światła. Zespół z Uniwersytetu Marii Curie-Skłodowskiej i Instytutu Agrofizyki PAN w Lublinie wskazał jednak dodatkowy mechanizm: do fotosyntezy potrzebna jest również energia cieplna, która - jak się wydawało - powstaje w tym procesie jako nieistotny skutek uboczny. Tymczasem z badań wynika, że ten „recykling energii” jest niezbędny w procesie wydajnego rozkładania wody do tlenu. Wyniki ukazały się w renomowanym czasopiśmie Journal of Physical Chemistry Letters.
      Wydajność energetyczna fotosyntezy jest niewielka – mówi w rozmowie z PAP prof. Wiesław Gruszecki z UMCS. Wyjaśnia, że roślina zamienia w biomasę najwyżej 6 proc. energii słonecznej, którą pobiera. Natomiast około 90 proc. energii pochłanianej ze światła jest oddawana do środowiska w postaci ciepła. Dotąd uważaliśmy, że frakcja oddawana do środowiska w postaci ciepła, z punktu widzenia wydajności energetycznej tego procesu, jest nieodwracalnie stracona. Ku naszemu zaskoczeniu okazało się jednak, że aparat fotosyntetyczny w roślinach jest na tyle sprytny, że potrafi jeszcze wykorzystywać część energii rozproszonej na ciepło – mówi.
      Naukowiec podkreśla, że są to badania podstawowe. Jego zdaniem mają one jednak szansę znaleźć zastosowanie choćby w rolnictwie.
      Jeśli procesy produkcji żywności się nie zmienią, to w połowie XXI wieku, kiedy Ziemię może zamieszkiwać nawet ponad 9 mld ludzi, nie starczy dla wszystkich jedzenia, tym bardziej przy niepokojących zmianach klimatycznych – alarmuje naukowiec. Badania jego zespołu są częścią międzynarodowych działań naukowców. Badają oni, co reguluje przepływy i wiązanie energii w procesie fotosyntezy. W powszechnym przekonaniu wiedza ta umożliwi inżynierię bądź selekcję gatunków roślin, które dawać będą większe plony.
      Gdyby produkować rośliny, w których ścieżka odzyskiwania energii cieplnej będzie jeszcze sprawniejsza – uważa badacz – to fotosynteza przebiegać będzie efektywniej, a roślina produkować będzie więcej biomasy. To zaś przekłada się bezpośrednio na większe plony.
      Zdaniem prof. Gruszeckiego kolejnym miejscem, gdzie można zastosować nową wiedzę, jest produkcja urządzeń do sztucznej fotosyntezy. Prace nad nimi trwają już w różnych miejscach na Ziemi, również w Polsce.
      Naukowiec wyjaśnia, na czym polegało odkrycie jego zespołu. Z badań wynika, że wśród struktur w chloroplastach, w których zachodzi fotosynteza, znajdują się kompleksy barwnikowo-białkowe. Pełnią one funkcję anten zbierających światło. Okazuje się, że kompleksy te grupują się spontanicznie w struktury zdolne do recyklingu energii rozproszonej w postaci ciepła. Anteny te przekazują również energię wzbudzenia uzyskaną z ciepła do centrów fotosyntetycznych, w których zachodzą reakcje rozszczepienia ładunku elektrycznego (w szczególności do Fotosystemu II). Proces ten wpływa na wzrost wydajności energetycznej fotosyntezy. I umożliwia wykorzystanie w tym procesie promieniowania o niższej energii (również z obszaru bliskiej podczerwieni). Wydaje się mieć to szczególne znaczenie w warunkach niskiej intensywności światła słonecznego.

      « powrót do artykułu
×
×
  • Create New...