Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W Science ukazał się artykuł, z którego dowiadujemy się, jak dużo światła wyemitowały wszystkie gwiazdy w całej historii obserwowalnego wszechświata. Obliczeń dokonał astrofizyk Marco Ajello i jego zespół z Clemson College of Science, którzy wykorzystali dane z Germi Gamma-ray Space Telescope.

Pierwsze gwiazdy zaczęły powstawać kilkaset milionów lat po powstaniu wszechświata. Obecnie istnieje około 2 bilionów galaktyk i biliony bilionów gwiazd. Dane z teleskopu Fermi pozwoliły nam na zmierzenie całego światła gwiazd, jakie zostało wyemitowane w dziejach wszechświata, mówi Ajello.

Z wyliczeń wynika, że dotychczas gwiazdy wyemitowały 4x1084 fotonów.

Warto też zauważyć, że pomimo tej olbrzymiej liczby fotonów, to całe światło, jakie dociera do Ziemi – z wyjątkiem światła ze Słońca i naszej galaktyki – jest niezwykle słabe. Odpowiada ono światłu z 60-watowej żarówki, jakie w zupełnej ciemności dotarłoby do nas z odległości około 4 kilometrów. Dzieje się tak ze względu na olbrzymi rozmiar wszechświata.

Fermi Gamma-ray Space Telescope został wystrzelony w czerwcu 2008 roku. Obserwuje on promieniowanie gamma i jego interakcję z pozagalaktycznym promieniowaniem tła (EBL). EBL to rodzaj mgły złożonej z całego ultrafioletowego, podczerwonego i widzialnego światła emitowanego przez gwiazdy i sąsiadujący z nimi pył. Profesor Ajello i jego koledzy przeanalizowali dane z 739 emitujących promieniowanie gamma blazarów zebrane przez Fermi w ciągu 9 lat.

Fotony promieniowania gamma wędrujące przez mgłę EBL są z dużym prawdopodobieństwem absorbowane. Mierząc, jak wiele fotonów zostało zaabsorbowanych, byliśmy w stanie zmierzyć, jak gruba jest mgła i zmierzyć, jako funkcję w czasie, jak wiele światła się w niej znajduje, mówi Ajello. Wykorzystując blazary znajdujące się w różnej odległości od nas zmierzyliśmy całkowite światło w różnych odcinkach czasu. Zmierzyliśmy całkowite światło dla każdej z epok: miliard lat temu, dwa miliardy lat temu i tak dalej i tak dalej, aż do czasu uformowania się pierwszych gwiazd. To pozwoliło nam zrekonstruować całkowite EBL i określić historię formowania się gwiazd w sposób bardziej efektywny, niż robiono to dotychczas", dodaje współpracownik Ajello, Vaidehi Paliya.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Fotony jednak w historii wszechświata emitowały nie tylko gwiazdy.

To raz.
A dwa jest takie że był okres anihilacji niemal wszystkiego - czyli niemal wszystko zmieniło się w światło. Gdzie ono jest? :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
47 minut temu, thikim napisał:

A dwa jest takie że był okres anihilacji niemal wszystkiego - czyli niemal wszystko zmieniło się w światło. Gdzie ono jest?

Oddala się z prędkością c. Trudno policzyć ile tego i gdzie jest. Na moje oko ostatni raz widziane jak przekraczały granice naszego stożka. Oczywiście widziane przez kogoś poza naszym stożkiem.

Edytowane przez Jajcenty

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czy jako światło rozumieć mam całe spektrum promieniowania, czy tylko jego wąski wycinek? Bez dokładnego ustalenia "granic" światła, to można sobie napisać cokolwiek.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale to rodzi szereg problemów :)
Anihilacji NIE ULEGŁ jeden na 10 miliardów barionów.

Czyli anihilacji uległo 2 x 9 999 999 999. Czyli w zasadzie: 20 000 000 000.

A 1 nie :)
Z tym że produktem anihilacji są od nowa kwarki i antykwarki i fotony.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, thikim napisał:

Gdzie ono jest?

Pozostałość po nim to mikrofalowe promieniowanie tła. Jest tego parę rzędów wielkości więcej niż fotonów, które wyemitowały gwiazdy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, Jajcenty napisał:

Oddala się z prędkością c. Trudno policzyć ile tego i gdzie jest. Na moje oko ostatni raz widziane jak przekraczały granice naszego stożka. Oczywiście widziane przez kogoś poza naszym stożkiem.

No właśnie!

Czy obliczenia opisane w artykule dotyczą tylko obserwowanej przez nas przestrzeni, czy całego wszechświata?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 30.11.2018 o 14:04, KopalniaWiedzy.pl napisał:

w całej historii obserwowalnego wszechświata

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, Szedar napisał:

Jest tego parę rzędów wielkości więcej niż fotonów, które wyemitowały gwiazdy.


Masz jakieś konkretne dane na temat tych paru rzędów wielkości? Czy to tylko domniemanie sprzeczne trochę z tym że na niebie w wielu zakresach promieniowania widzimy jednak gwiazdy i Słońce a nie mikrofalowe promieniowanie tła.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To nie jest domniemanie, a wynik obserwacji i prostego oszacowania; mierzymy w końcu strumień CMB. Możesz zresztą zrobić to prościej, czyli wiedząc, że jest to podręcznikowo termiczne promieniowanie o T jakieś 2.7 K. Wystarczy skorzystać z prawa Stefana-Boltzmanna i podzielić przez średnią energię fotonu. Wyjdzie, że na jeden foton "gwiazdowy" przypada ok. 105 fotonów CMB. Nie ma tu żadnej sprzeczności. Wystarczy sobie uświadomić ile razy mniejszą energię ma taki foton od fotonu "gwiazdowego".

P.S. Zgodność obserwacji CMB z modelem Wielkiego Wybuchu doczekała się dawno temu nagrody Nobla.

Znalazłem jeszcze w pewnych notkach oszacowanie gęstości fotonów CMB na 400 w cm3.

Edytowane przez Szedar

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Można jeszcze prościej: rozkład Plancka podzielony przez energię fotonu i scałkowany daje N = 20.3 T3 (w cm-3), co można zastosować wprost, ponieważ CMB jest z grubsza promieniowaniem izotropowym - świeci z każdego punktu na niebie.

Edytowane przez Szedar

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 1.12.2018 o 20:30, Szedar napisał:

Można jeszcze prościej: rozkład Plancka podzielony przez energię fotonu i scałkowany daje N = 20.3 T3 (w cm-3), co można zastosować wprost, ponieważ CMB jest z grubsza promieniowaniem izotropowym - świeci z każdego punktu na niebie.

Wymiękłam ;)
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

20,3*2,73 to właśnie ok. 400, ale jeśli ktoś woli, to:

https://en.wikipedia.org/wiki/Cosmic_microwave_background

Cytat

Most of the radiation energy in the universe is in the cosmic microwave background [...] Density of energy for CMB is 0.25 eV/cm3[17] (4.005×10−14 J/m3) or (400–500 photons/cm3[18]).

 

Założę się, że każdy pewnie widział CMB:

http://nighstars.pl/2015/10/17/szum-w-radiu-i-tv-skad-pochodzi/

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

×