-
Similar Content
-
By KopalniaWiedzy.pl
Międzynarodowa grupa fizyków pracująca pod kierownictwem Nuclear Physics Group z University of Surrey właśnie obaliła przekonanie, jakoby jądro ołowiu-208 było idealną sferą. Wyniki badań opublikowane na łamach Pysical Review Letters stanową wyzwanie dla założeń dotyczących struktury jądra i mają olbrzymie znaczenie dla naszego rozumienia sposobów powstawania najcięższych pierwiastków.
Ołów-208 to pierwiastek wyjątkowo stabilny, gdyż jego jądro jest podwójnie magiczne. I jest najcięższych podwójnie magicznym jądrem, jakie znamy. Z modelu powłokowego możemy wywnioskować, że te jądra, których powłoki są wypełnione, mają większą energię wiązania, są zatem stabilniejsze niż inne jądra. Liczby protonów i neutronów, dla których powłoki są wypełnione, nazywane są liczbami magicznymi. Obecnie uznane liczby magiczne zarówno dla protonów jak i neutronów to 2, 8, 20, 28, 50, 82 i 126. Jeśli mamy do czynienia z jądrem, dla którego i protony i neutrony występują w liczbie magicznej, mówimy o jądrze podwójnie magicznym. 208Pb ma 82 protony i 126 neutronów.
Nowa badania pokazały, że 208Pb nie jest idealną sferą, a ma nieco wydłużony kształt, przypominający piłkę do rugby. Udało nam się połączyć cztery różne pomiary wykonane za pomocą najbardziej czułych urządzeń na świecie. Dzięki temu dokonaliśmy tej przełomowej obserwacji. To, co zobaczyliśmy, było dla nas zaskoczeniem. Dowiedliśmy, że ołów-208 nie jest sferą, jak naiwnie przypuszczano. Te wyniki rzucają wyzwanie kolegom zajmującym się teorią jądra atomowego. To ekscytujący temat przyszłych badań, mówi doktor Jack Henderson z University of Surrey.
Badacze wykorzystali spektrometr gamma GRETINA z Argonne National Laboratory w USA i zbombardowali atomy ołowiu strumieniem cząstek przyspieszonych do prędkości 10% prędkości światła. W wyniku interakcji jądra atomów ołowiu zostały wzbudzone, co pozwoliło określić ich kształt. Teraz grupa fizyków-teoretyków analizuje modele budowy jądra atomowego, gdyż eksperyment dowiódł, że jego struktura jest bardziej złożona niż sądzono. Eksperyment rzucił nowe światło na zagadnienie, o którym sądziliśmy, ze je dobrze rozumiemy i postawił przed nami nowe wyzwania. Musimy teraz odpowiedzieć na pytanie, dlaczego wyniki eksperymentu są takie, a nie inne. Jedną z możliwości jest stwierdzenie, że wibracje wzbudzonego jądra 208Pb są mniej regularne, niż dotychczas uważaliśmy. Doprecyzowujemy teraz nasze teorie, by sprawdzić, które z hipotez są prawdziwe, wyjaśnia profesor Paul Stevenson.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wywiadu udzielił nam profesor Grzegorz Pietrzyński z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego, którego zespół dokonał najbardziej precyzyjnych w historii pomiarów odległości do Wielkiego Obłoku Magellana.
1. Czy astronomia/astrofizyka mają jakieś bezpośrednie przełożenie na życie codzienne? Czy badania kosmosu, poza oczywistymi przykładami satelitów komunikacyjnych i meteorologicznych, mają znaczenie dla ludzi żyjących tu i teraz czy też są przede wszystkim badaniami wybiegającymi w przyszłość (tzn. mogą mieć ewentualnie znaczenie w przyszłości) i poszerzającymi naszą wiedzę, ale nie rozwiązującymi obecnych praktycznych problemów.
Astronomia należy do tzw nauk podstawowych, których wyniki nie są bezpośrednio komercjalizowane. Proszę zauważyć, że opracowanie jakiejkolwiek nowej technologii wymaga odpowiedniego postępu w badaniach podstawowych. Dlatego wszystko co dziś mamy zawdzięczamy naukom podstawowym.
2. Co rodzi w umyśle naukowca pytanie "Ciekawe, jaka jest dokładna odległość między Ziemią, a Obłokiem Magellana"?
Takie pytanie rodzi kolejne - jak zmierzyć taką odleglość ?
3. Ile czasu zajęło wyznaczenie aktualnej odległości do Obłoku (wliczając w to obserwacje, symulacje, wyliczenia)?
Naszej grupie Araucaria zajęło to około 12 lat. W międzyczasie mierzyliśmy odległości do Wielkiego Obłoku Magellana używając innych technik (gwiazd red clump, Cefeid, RR Lyrae, etc). Jednak od początku wiadomo było, że układy zaćmieniowe mają największy potencjał bardzo dokładnego pomiaru odległości do tej galaktyki.
4. Jak wygląda proces i jakie instrumenty zostały wykorzystane?
Proces był długi i bardzo złożony. W skrócie: w opariu o dane fotometryczne zgromadzone przez zespół Optical Gravitational Lensing Experiment znaleziono najlepsze kandydatki do dalszych badań. Następnie przez okolo 8 lat w ramach projektu Araucaria obserwowaliśmy widma wybranych systemów za pomoca 6,5-metrowego teleskopu Magellan w Las Campanas Observatory, wyposażonego w spektrograf MIKE oraz 3,6-metrowego teleskopu w La Silla, ESO, wyposażonego w spektrograf HARPS. Dodatkowo wykonaliśmy pomiary jasności naszych układów w bliskiej podczerwieni używając instrumentu SOFI dostępnego na 3,5-metrowym teleskopie NTT, ESO, La Silla. Po obróbce otrzymanych obrazów wykonano odpowiednie pomiary.
5. W jaki sposób dokładniejszy pomiar odległości od najbliższego Obłoku przełoży się na skalę kosmiczną?
Wszystkie pomiary odległości do galaktyk wykonuje się względem Wielkiego Obłoku Magellana. Dlatego pomiar odległości do WOM definiuje bezpośrednio punkt zerowy całej kosmicznej skali odległości.
6. Co umożliwi uzyskanie jeszcze dokładniejszego wyniku? Lepszy kandydat (para analizowanych gwiazd podwójnych)?
Trudno wyobrazić sobie jeszcze lepsze układy podwójne do pomiaru odleglosci do WOM. Największym źródłem błędu jest zależność pomiędzy temperaturą gwiazdy a jej rozmiarami kątowymi. Jej dokładność wynosi obecnie około 2%. Nasz zespół prowadzi badania mające na celu dokładniejsze skalibrowanie tej zależności. Spodziewamy się, że w niedalekiej przyszłości uda nam się zmierzyć odleglość do WOM z dokładnością około 1%.
7. Zawsze mnie intrygowało to, że w mediach, a i na oficjalnych portalach prezentowane są artystyczne wizje gwiazd i planet, które co prawda spełniają swoje zadanie przed typowym odbiorcą, ale faktycznie przecież często jest to zlepek kilku lub jeden piksel zdjęcia. Nie potrafię sobie wyobrazić jak stąd wyciągnąć informacje o rozmiarze, masie, orbicie, temperaturze takich ciał. Jak dla mnie to daleko trudniejsze niż próba odczytania Hubblem napisu "Made in USA" na Curiosity. W jaki sposób z takich kilku pikseli można cokolwiek powiedzieć o obserwowanym obiekcie?
Oczywiście nie jesteśmy w stanie rozdzielić tych obiektów. W przypadku układów zaćmieniowych badając zmiany blasku (zaćmienia to efekt czysto geometryczny) oraz widma (z nich wyznaczymy predkości gwiazd na orbicie) w oparciu o proste prawa fizyczne jesteśmy w stanie wyznaczyć parametry fizyczne gwiazd. Jest to klasyczna metoda stosowana od dawna w astronomii. Aby jej użyć nie musimy rozdzielać obrazów gwiazd wchodzacych w skład danego układu podwójnego.
8. Czy rodowisko naukowców astronomów ma w naszym kraju problemy z finansowaniem i rozwijaniem projektów?
Oczywiscie tak! Z mojego punktu widzenia jest obecnie dużo różnych źródeł finansowania, więc najlepsze projekty mają duże szanse na finansowanie. Dużo gorzej jest z realizacją i rozwojem projektów.Tysiące bezsensownych przepisów, rozdęta do granic absurdu biurokracja, brak wyobraźni i dobrej woli urzędników. To tylko niektóre czynniki, które sprawiają, że wykonanie ambitnego projektu naukowego w Polsce jest niezmiernie trudne.
« powrót do artykułu -
By KopalniaWiedzy.pl
Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.
Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.
Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.
Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.
Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Katedry i Kliniki Chorób Wewnętrznych, Pneumonologii i Alergologii Centralnego Szpitala Klinicznego Uniwersyteckiego Centrum Klinicznego Warszawskiego Uniwersytetu Medycznego (CSK UCK WUM) oraz Instytutu Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN prowadzą badania nad unikalną metodą monitorowania ciśnienia opłucnowego podczas usuwania płynu z jamy opłucnej.
Specjaliści podkreślają, że obecność płynu w jamie opłucnej to dość częsty problem kliniczny. Przyczyną mogą być takie choroby, jak zapalenie płuc, gruźlica, choroby nowotworowe, niewydolność serca czy marskość wątroby.
Z szacunkowych danych wynika, że wysięk w jamie opłucnej spowodowany schorzeniami nowotworowymi dotyka w Polsce ok. 20-25 tys. pacjentów/rok. Lekarze pracujący w oddziałach chorób wewnętrznych czy oddziałach chorób płuc spotykają się z takimi pacjentami na co dzień, a punkcja opłucnej (toracenteza), podczas której usuwa się płyn z jamy opłucnej, jest powszechnie stosowanym zabiegiem o charakterze diagnostycznym i terapeutycznym – wyjaśnia prof. Rafał Krenke, kierownik Katedry i Kliniki Chorób Wewnętrznych, Pneumonologii i Alergologii CSK UCK WUM.
Cele konsorcjum naukowego
W ramach projektu "Wykorzystanie wysokoobjętościowej toracentezy i pomiaru ciśnienia opłucnowego do badania nowo opisanych zjawisk patofizjologicznych u chorych z płynem w jamie opłucnej" konsorcjum naukowe chce zbadać 1) zależności między objętością usuwanego płynu a ciśnieniem opłucnowym oraz 2) możliwości wpływania na tempo spadku ciśnienia podczas zabiegu.
Zespół wymienia też cele szczegółowe badania. Specjaliści chcą zweryfikować hipotezę, że kaszel lub zastosowanie ciągłego dodatniego ciśnienia w drogach oddechowych przez maskę twarzową (CPAP) poprawia upowietrznienie płuca. Zamierzają też ocenić, czy spadek utlenowania krwi podczas i po zakończeniu zabiegu ma związek ze zwiększonym przepływem krwi przez nieupowietrzniony fragment płuca. Oprócz tego zbadany ma zostać wpływ obecności płynu na funkcję mięśni oddechowych. Prof. Krenke podkreśla, że badania mają nowatorski charakter. "Wyznaczamy nowe trendy i kierunki badań nad chorobami opłucnej".
Elektroniczny manometr - autorskie urządzenie polskich specjalistów
W komunikacie WUM podkreślono, że w czasie rutynowo wykonywanej punkcji nie stosuje się pomiaru ciśnienia opłucnowego. Może więc dochodzić do jego gwałtownego obniżenia i rozwoju groźnego stanu zwanego porozprężeniowym obrzękiem płuca. Chcąc temu zapobiec, specjaliści z WUM badają od jakiegoś czasu unikatową metodę monitorowania ciśnienia opłucnowego z wykorzystaniem elektronicznego manometru. Jest to autorskie urządzenie, skonstruowane we współpracy z inżynierami z Instytutu Biocybernetyki i Inżynierii Biomedycznej PAN.
Już na etapie wstępnych badań stwierdzono, że dzięki pomiarowi ciśnienia opłucnowego w czasie toracentezy można bezpiecznie usunąć większą objętość płynu niż standardowa zalecana (1-1,5 l) i zakończyć zabieg, gdy dojdzie do nagłego spadku tego ciśnienia. Optymistyczne wyniki wstępnych badań oraz zaobserwowanie wielu ciekawych i nieznanych zjawisk zachęciły nas do kontynuowania prac nad opracowaniem bezpiecznej i skutecznej procedury ewakuacji płynu z jamy opłucnej – zaznacza prof. Krenke.
Wpływ kaszlu i dodatniego ciśnienia w drogach oddechowych
Na co badacze zwrócili uwagę? Zauważyli, że kaszel pojawiający się podczas toracentezy prowadzi do podwyższenia ciśnienia w jamie opłucnej, co z kolei skutkuje zmniejszeniem tempa spadku ciśnienia w trakcie usuwania płynu. Podczas toracentezy dochodzi do spadku ciśnienia w jamie opłucnej. Okazało się, że kaszel może przeciwdziałać zbyt gwałtownemu obniżeniu tego ciśnienia. W konsekwencji kaszel może być postrzegany jako korzystne zjawisko, pozwalające lekarzowi skuteczniej usunąć płyn - wyjaśnia Krenke.
Bazując na tych spostrzeżeniach, zespół zamierza również zbadać wpływ dodatniego ciśnienia w drogach oddechowych na tempo spadku ciśnienia opłucnowego. Dostępne dane wskazują, że jeśli u pacjenta poddanemu toracentezie stosuje się dodatnie ciśnienie w drogach oddechowych, to tempo spadku ciśnienia opłucnowego się zmniejsza, a tym samym zwiększa się bezpieczeństwo zabiegu oraz objętość płynu, którą można usunąć. W naszych badaniach chcemy do tego celu wykorzystać prosty aparat generujący dodatnie ciśnienie i maskę mocowaną do twarzy pacjenta. Sprawdzimy, jak ta procedura wpłynie na skuteczność zabiegu i proces rozprężania się płuca w trakcie usuwania płynu - tłumaczy profesor. Dotąd podobne badania prowadzono na świecie raz, ale były to badania wstępne, sprawdzające wpływ dodatniego ciśnienia. Brakuje zatem większych badań, które pokażą, czy metoda naprawdę jest skuteczna.
Zjawisko, którego nikt wcześniej nie opisał
Naukowcom zależy także na lepszym poznaniu zależności między wahaniami ciśnienia w jamie opłucnej podczas oddychania i zmianą objętości serca. Prawidłowym warunkiem wentylacji płuca są stałe zmiany ciśnienia w jamie opłucnej, które obniża się w czasie wdechu, a podwyższa się podczas wydechu. W naszych wcześniejszych badaniach, prowadzonych wspólnie z kolegami kardiologami, zauważyliśmy dodatkowe mikrowahania ciśnienia w jamie opłucnej, które prawdopodobnie odpowiadają zmianom objętości serca. W trakcie rozpoczętego właśnie projektu chcemy ustalić znaczenie tych oscylacji oraz sprawdzić, czy wiedza ta może zostać wykorzystana w medycynie klinicznej - objaśnia prof. Krenke.
Rola rehabilitacji
Istotną częścią badań ma być ocena skuteczności rehabilitacji pacjentów przechodzących toracentezę. Płuco, które było uciśnięte przez płyn, stosunkowo powoli powraca do swoich normalnych objętości. Dlatego realizując obecny projekt, chcemy zbadać, czy intensywna rehabilitacja w okresie okołozabiegowym pozwoli zwiększyć sprawność rozprężania się płuca po usunięciu płynu z jamy opłucnej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po raz pierwszy udało się zademonstrować działanie interferometrii atomowej w przestrzeni kosmicznej. Osiągnięcie niemieckich naukowców oznacza, że interferometry atomowe, niezwykle precyzyjne urządzenia pomiarowe, mogą zostać wykorzystane poza Ziemią, np. na Międzynarodowej Stacji Kosmicznej. Posłużyć tam mogą chociażby do pomiarów pola grawitacyjnego Ziemi czy wykrywania fal grawitacyjnych.
Stworzyliśmy technologiczne podstawy do wykorzystania interferometrii atomowej na pokładzie rakiety meteorologicznej i wykazaliśmy, że prowadzenie tego typu eksperymentów jest możliwe nie tylko na Ziemi ale i w kosmosie, mówi profesor Patrick Windpassinger z Instytutu Fizyki z Uniwersytetu Jana Gutenberga w Moguncji.
Prace prowadzili naukowcy z różnych uczelni i instytucji badawczych, a zespołem kierowali specjaliści z Uniwersytetu Hanowerskiego. W styczniu 2017 roku wystrzelili oni misję MAIUS-1. Jest to pierwsza w historii misja, w czasie której kondensat Bosego-Einsteina był generowany w przestrzeni kosmicznej. Ten specjalny stan materii uzyskuje się schładzając atomy – w tym przypadku atomy rubidu – do temperatur bliskich zeru absolutnemu. Ta ultrazimna materia stała się dla nas obiecującym punktem wyjścia do interferometrii atomowej, mówi Windpassinger. Niskie temperatury odgrywają tutaj kluczową rolę, gdyż pozwalają na prowadzenie bardzo precyzyjnych i dłuższych pomiarów.
W czasie eksperymentów wykorzystywano laser do odseparowywania od siebie atomów rubidu i tworzenia ich superpozycji. Możliwe było w ten sposób wytworzenie różnych wzorców interferencji pomiędzy atomami, co z kolei można wykorzystać do badania sił wpływających na atomy, w tym do badania grawitacji.
Misja MAIUS-1 przyniosła więc potwierdzenie słuszności opracowanej koncepcji oraz jej technicznej wykonalności. To zaś oznacza, że możliwe będzie wykorzystanie interferometru atomowego utworzonego z kondensatu Bosego-Einsteina do prowadzenia różnych badań i pomiarów.
W najbliższym czasie niemieccy naukowcy chcą sprawdzić, czy taki interferometr zda egzamin. W roku 2022 wystartuje MAIUS-2, a w roku 2023 – MAIUS-3. Uczeni chcą użyć interferometrów stworzonych nie tylko z atomów rubidu, ale też potasu. Porównując przyspieszenie podczas spadku swobodnego pomiędzy tymi dwoma typami atomów można będzie przetestować Einsteinowską zasadę równoważności z niedostępną dotychczas precyzją.
W przyszłości tego typu eksperymenty można będzie prowadzić na satelitach lub Międzynarodowej Stacji Kosmicznej, gdzie prawdopodobnie uda się do tego wykorzystać planowane właśnie BECCAL czyli Bose Einstein Condensate and Cold Atom Laboratory. W tym wypadku precyzja pomiarów nie będzie ograniczona krótkim czasem swobodnego spadku rakiety, wyjaśnia doktor Andre Wenzlawski z grupy badawczej Windpassingera.
Szczegóły badań opisano na łamach Nature Communications.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.