Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jeden, by wszystkimi rządzić. Fizycy uprościli architekturę fotonicznego komputera kwantowego

Recommended Posts

Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.

Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.

Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.

Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.

Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Austrii i Włoch stworzyli „kwantowy memrystor”, urządzenie zdolne do przekazywania koherentnej informacji kwantowej w postaci superpozycji pojedynczych fotonów. Urządzenie takie może stać się podstawą do stworzenia kwantowej wersji architektury neuromorficznej, której działanie ma naśladować pracę ludzkiego mózgu.
      Memrystor, to czwarty podstawowy typ elementu elektronicznego. Od dawna znaliśmy opornik, kondensator i cewkę. W 1971 roku profesor Leon Chua z Kalifornii wysunął hipotezę, że może istnieć czwarty element, który nazwał opornikiem pamięci czyli memrystorem. Urządzenie takie powstało niemal 40 lat później, w 2008 roku. Memrystory szybko okazały się bardziej przydatne, niż sądzono, a przed dwoma laty wykorzystano je do zbudowania urządzenia działającego podobnie jak neuron.
      Badania  nad tym elementem elektronicznym ciągle trwają, a najnowszym osiągnięciem jest połączenie go z technologią kwantową.
      Memrystor współpracujący ze stanami kwantowymi i przekazujące kwantowe informacje został zbudowany przez uczonych z Uniwersytetu Wiedeńskiego, Politechniki Mediolańskiej i włoskiej Narodowej Rady Badawczej. Stworzono go za pomocą femtosekundowego lasera emitującego krótkie impulsy światła trwające zaledwie 10-15 sekundy. Za pomocą tych impulsów naukowcy rzeźbili w szkle falowody, kanały zdolne do więzienia lub przesyłania światła.
      Michele Spagnolo i jego zespół wykorzystali falowody do przesyłania pojedynczych fotonów. Dzięki ich kwantowej naturze znajdujące się w superpozycji fotony można było w tym samym czasie wysyłać przez dwa lub więcej falowodów. Za pomocą bardzo zaawansowanych wykrywaczy pojedynczych fotonów mogliśmy dokonywać pomiaru fotonu w jednym z falowodów, a następnie wykorzystać ten pomiar do kontrolowania urządzenia modulując transmisję w innym falowodzie. W ten sposób nasze urządzenie zachowywało się jak memrystor, wyjaśnia Michele Spagnolo. Oprócz uzyskania w ten sposób zachowania typowego dla memrystora, naukowcy – za pomocą symulacji – wykazali, że sieć optyczna zawierająca kwantowe memrystory będzie zdolna do nauki rozwiązywania problemów zarówno w sposób klasyczny, jak i kwantowy. To zaś wskazuje, że kwantowy memrystor może być tym elementem, który połączy sztuczną inteligencję i komputery kwantowe.
      Klasyczne memrystory są obecnie używane w badaniach nad komputerowymi platformami neuromorficznymi. Dlatego też włosko-austriacki zespół sądzi, że kwantowy memrystor może przyczynić się do powstania kwantowych sieci neuromorficznych.
      Uwolnienie pełnego potencjału możliwości sztucznej inteligencji zbudowanej na systemach kwantowych to jedno z najważniejszych obecnie wyzwań fizyki kwantowej i informatyki, dodaje Spagnolo. Uczony dodaje, że jego grupa już rozpoczęła prace nad odpowiednim urządzeniem. Jej pierwszym celem jest stworzenie urządzenia składającego się z kilkunastu kwantowych memrystorów operującego na kilkunastu fotonach. To poważne wyzwanie technologiczne, przyznaje naukowiec.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Webba zarejestrował pierwsze fotony. Z powodzeniem przebyły one całą drogę przez układ optyczny i trafiły do NIRCam. To jedno z najważniejszych osiągnięć zaplanowanego na trzy miesiące etapu dostrajania teleskopu. Dotychczas uzyskane wyniki odpowiadają oczekiwaniom i naziemnym symulacjom.
      NIRCam to działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona zarejestruje światło z pierwszych gwiazd i galaktyk, pokaże gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Koronografy blokują światło jasnego obiektu, uwidaczniając obiekty słabo świecące. Dzięki nim astronomowie chcą dokładnie obserwować planety krążące wokół pobliskich gwiazd i poznać ich charakterystyki. NIRCam wyposażono w dziesięć czujników rtęciowo-kadmowo-telurkowych, które są odpowiednikami matryc CCD ze znanych nam aparatów cyfrowych. To właśnie NIRCam jest wykorzystywana do odpowiedniego ustawienia zwierciadła webba.
      Żeby zwierciadło główne teleskopu działało jak pojedyncze lustro trzeba niezwykle precyzyjnie ustawić względem siebie wszystkie 18 tworzących je segmentów. Muszę one do siebie pasować z dokładnością do ułamka długości fali światła, w przybliżeniu będzie to ok. 50 nanometrów.
      Teraz, gdy zwierciadło jest rozłożone, a instrumenty włączone, rozpoczęliśmy wieloetapowy proces przygotowywania i kalibrowania teleskopu. Będzie on trwał znacznie dłużej niż w przypadku innych teleskopów kosmicznych, gdyż zwierciadło główne Webba składa się z 18 segmentów, które muszą działać jak jedna wielka powierzchnia, wyjaśniają eksperci z NASA.
      Najpierw trzeba ustawić teleskop względem jego platformy nośnej. Wykorzystuje się w tym celu specjalne systemy śledzenia gwiazd. Obecnie położenie platformy nośnej i segmentów lustra względem gwiazd nie jest ze sobą zgodne. Dlatego też wybrano jedną gwiazdę, jest nią HD 84406, względem której całość będzie ustawiana.
      Każdy z 18 segmentów zwierciadła rejestruje obraz tej gwiazdy, a jako że są one w różny sposób ustawione, na Ziemię trafią różne niewyraźne obrazy. Obsługa naziemna będzie następnie poruszała każdym z segmentów z osobna, by określić, który z nich zarejestrował który z obrazów. Gdy już to będzie wiadomo, segmenty będą obracane tak, by wszystkie z uzyskanych obrazów miały podobny wspólny punkt. Stworzona w ten sposób „macierz obrazów” zostanie szczegółowo przeanalizowana.
      Wówczas rozpocznie się drugi etap ustawiania zwierciadła, w ramach którego zredukowane zostaną największe błędy ustawienia. Najpierw obsługa poruszy nieco zwierciadłem wtórnym, co dodatkowo zdeformuje obrazy uzyskiwane z poszczególnych segmentów. Dzięki temu możliwe będzie przeprowadzenie analizy matematycznej, która precyzyjnie określi błędy w ułożeniu każdego z segmentów. Po skorygowaniu tych błędów otrzymamy 18 dobrze skorygowanych ostrych obrazów.
      W kolejnym etapie położenie każdego z segmentów lustra będzie zmieniane tak, by generowany przezeń obraz trafił dokładnie do środka pola widzenia teleskopu. Każdy z 18 segmentów został przypisany do jednej z trzech grup (oznaczonych jako A, B i C), więc ten etap prac będzie wykonywany w grupach.
      Po zakończeniu trzeciego etapu będziemy już mieli jeden obraz, jednak będzie to nadal obraz uzyskany tak, jakbyśmy nałożyli na siebie obrazy z 18 różnych teleskopów. Zwierciadło główne wciąż nie będzie działało jak jedno lustro. Rozpocznie się, przeprowadzany trzykrotnie, etap (Coarse Phasing) korygowania ustawienia segmentów lustra względem siebie. Po każdej z trzech części tego etapu ustawienia będą sprawdzane i korygowane za pomocą specjalnych elementów optycznych znajdujących się wewnątrz NIRCam (Fine Phasing). W jego trakcie obraz z poszczególnych zwierciadeł celowo będzie ustawiany poza ogniskową i prowadzone będą analizy zniekształceń. Ten ostatni proces superprecyzyjnej korekty ustawień będzie zresztą przeprowadzany rutynowo podczas całej pracy Webba.
      Gdy już teleskop zostanie odpowiednio ustawiony, rozpocznie się etap dostrajania pozostałych trzech instrumentów naukowych. Wyłapane zostaną ewentualne błędy i niedociągnięcia, a specjalny algorytm pokaże, jakich poprawek trzeba dokonać. W końcu, w ostatnim etapie prac, obsługa naziemna osobno sprawdzi jakość obrazu uzyskiwanego dzięki każdemu z segmentów zwierciadła głównego i usunie ewentualne błędy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii.
      Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu.
      Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex.
      Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów.
      Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber.
      Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki.
      To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin.
      Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra.
      Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.
      Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.
      Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.
      Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.
      Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy denerwujemy się, że nasz domowy pecet uruchamia się za długo, pewnym pocieszeniem może być informacja, iż w porównaniu z eksperymentalnymi komputerami kwantowymi jest on demonem prędkości. Uczeni pracujący nad tego typu maszynami spędzają każdego dnia wiele godzin na ich odpowiedniej kalibracji.
      Komputery kwantowe, a raczej maszyny, które w przyszłości mają się nimi stać, są niezwykle czułe na wszelkie zewnętrzne zmiany. Wystarczy, że temperatura otoczenia nieco spadnie lub wzrośnie, że minimalnie zmieni się ciśnienie, a maszyna taka nie będzie prawidłowo pracowała. Obecnie fizycy kwantowi muszą każdego dnia sprawdzać, jak w porównaniu z dniem poprzednim zmieniły się warunki. Później dokonują pomiarów i ostrożnie kalibrują układ kwantowy - mówi profesor Frank Wilhelm-Mauch z Uniwersytetu Kraju Saary. Dopuszczalny margines błędu wynosi 0,1%, a do ustawienia jest około 50 różnych parametrów. Kalibracja takiej maszyny jest zatem niezwykle pracochłonnym przedsięwzięciem.
      Wilhelm-Mauch i jeden z jego doktorantów zaczęli zastanawiać się na uproszczeniem tego procesu. Stwierdzili, że niepotrzebnie skupiają się na badaniu zmian w środowisku. Istotny jest jedynie fakt, że proces kalibracji prowadzi do pożądanych wyników. Nie jest ważne, dlaczego tak się dzieje. Uczeni wykorzystali algorytm używany przez inżynierów zajmujących się mechaniką konstrukcji. Dzięki niemu możliwe było zmniejszenie odsetka błędów poniżej dopuszczalnego limitu 0,1% przy jednoczesnym skróceniu czasu kalibracji z 6 godzin do 5 minut. Niemieccy naukowcy nazwali swoją metodologię Ad-HOC (Adaptive Hybrid Optimal Control) i poprosili kolegów z Uniwersytetu Kalifornijskiego w Santa Barbara o jej sprawdzenie. Testy wypadły pomyślnie.
      W przeciwieństwie do metod ręcznej kalibracji nasza metoda jest całkowicie zautomatyzowana. Naukowiec musi tylko wcisnąć przycisk jak w zwykłym komputerze. Później może pójść zrobić sobie kawę, a maszyna kwantowa sama się wystartuje - mówi Wilhelm-Mauch.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...