Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jeden, by wszystkimi rządzić. Fizycy uprościli architekturę fotonicznego komputera kwantowego

Recommended Posts

Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.

Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.

Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.

Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.

Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.
      Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.
      Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.
      Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.
      Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy denerwujemy się, że nasz domowy pecet uruchamia się za długo, pewnym pocieszeniem może być informacja, iż w porównaniu z eksperymentalnymi komputerami kwantowymi jest on demonem prędkości. Uczeni pracujący nad tego typu maszynami spędzają każdego dnia wiele godzin na ich odpowiedniej kalibracji.
      Komputery kwantowe, a raczej maszyny, które w przyszłości mają się nimi stać, są niezwykle czułe na wszelkie zewnętrzne zmiany. Wystarczy, że temperatura otoczenia nieco spadnie lub wzrośnie, że minimalnie zmieni się ciśnienie, a maszyna taka nie będzie prawidłowo pracowała. Obecnie fizycy kwantowi muszą każdego dnia sprawdzać, jak w porównaniu z dniem poprzednim zmieniły się warunki. Później dokonują pomiarów i ostrożnie kalibrują układ kwantowy - mówi profesor Frank Wilhelm-Mauch z Uniwersytetu Kraju Saary. Dopuszczalny margines błędu wynosi 0,1%, a do ustawienia jest około 50 różnych parametrów. Kalibracja takiej maszyny jest zatem niezwykle pracochłonnym przedsięwzięciem.
      Wilhelm-Mauch i jeden z jego doktorantów zaczęli zastanawiać się na uproszczeniem tego procesu. Stwierdzili, że niepotrzebnie skupiają się na badaniu zmian w środowisku. Istotny jest jedynie fakt, że proces kalibracji prowadzi do pożądanych wyników. Nie jest ważne, dlaczego tak się dzieje. Uczeni wykorzystali algorytm używany przez inżynierów zajmujących się mechaniką konstrukcji. Dzięki niemu możliwe było zmniejszenie odsetka błędów poniżej dopuszczalnego limitu 0,1% przy jednoczesnym skróceniu czasu kalibracji z 6 godzin do 5 minut. Niemieccy naukowcy nazwali swoją metodologię Ad-HOC (Adaptive Hybrid Optimal Control) i poprosili kolegów z Uniwersytetu Kalifornijskiego w Santa Barbara o jej sprawdzenie. Testy wypadły pomyślnie.
      W przeciwieństwie do metod ręcznej kalibracji nasza metoda jest całkowicie zautomatyzowana. Naukowiec musi tylko wcisnąć przycisk jak w zwykłym komputerze. Później może pójść zrobić sobie kawę, a maszyna kwantowa sama się wystartuje - mówi Wilhelm-Mauch.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Modulowane kwantowe metapowierzchnie mogą posłużyć do kontrolowania wszystkich właściwości fotonicznego kubitu, uważają naukowcy z Los Alamos National Laboratory (LANL). To przełomowe spostrzeżenie może wpłynąć na rozwój kwantowej komunikacji, informatyki, systemów obrazowania czy pozyskiwania energii. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
      Badania nad klasycznymi metapowierzchniami prowadzone są od dawna. My jednak wpadliśmy na pomysł modulowania w czasie i przestrzeni właściwości optycznych kwantowych metapowierzchni. To zaś pozwala na swobodne dowolne manipulowanie pojedynczym fotonem, najmniejszą cząstką światła, mówi Diego Dalvit z grupy Condensed Matter and Complex System w Wydziale Teorii LANL.
      Metapowierzchnie to ultracienkie powierzchnie, pozwalające na manipulowanie światłem w sposób, jaki zwykle nie występuje powierzchnie. Zespół z Los Alamos stworzył metapowierzchnię wyglądającą jak zbiór poobracanych w różne strony krzyży. Krzyżami można manipulować za pomocą laserów lub impulsów elektrycznych. Pojedynczy foton, przepuszczany przez taką metapowierzchnię, wchodzi w stan superpozycji wielu kolorów, stanów, dróg poruszania się, tworząc kwantowy stan splątany. W tym przypadku oznacza to, że foton jest w stanie jednocześnie przybrać wszystkie właściwości.
      Modulując taką metapowierzchnię za pomocą lasera lub impulsu elektrycznego, możemy kontrolować częstotliwość pojedynczego fotonu, zmienać kąt jego odbicia, kierunek jego pola elektrycznego czy jego spin, dodaje Abul Azad z Center for Integrated Nanotechnologies.
      Poprzez manipulowanie tymi właściwościami zyskujemy możliwość zapisywania informacji w fotonach.
      Naukowcy pracują też nad wykorzystaniem modulowanej kwantowej metapowierzchni do pozyskania fotonów z próżni. Kwantowa próżnia nie jest pusta. Pełno w niej wirtualnych fotonów. Za pomocą modulowanej kwantowej metapowierzchni można w sposób efektywny pozyskiwać te fotony i zamieniać je w realne pary fotonów, wyjaśnia Wilton Kort-Kamp.
      Pozyskanie fotonów z próżni i wystrzelenie ich w jednym kierunku, pozwoli uzyskać ciąg w kierunku przeciwnym. Niewykluczone zatem, że w przyszłości uda się wykorzystać ustrukturyzowane światło do generowania mechanicznego ciągu, a wszystko to dzięki metapowierzchniom i niewielkiej ilości energii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Harvard-MIT Center for Ultracold Atoms stworzyli specjalny typ komputera kwantowego, zwany programowalnym symulatorem kwantowym, który operuje na 256 kubitach. To niezwykle ważny krok w kierunku maszyn kwantowych działających na duża skalę. Wchodzimy na teren, którego dotychczas nikt nie badał, mówi profesor Mikhail Lukin, jeden z głównych autorów badań. To zupełnie nowa część kwantowego świata.
      Połączenie bezprecedensowej liczby kubitów oraz możliwości ich programowania jest tym, co stawia nowy system na czele kwantowego wyścigu i pozwoli badać niedostępne dotychczas zagadnienia z dziedziny informatyki kwantowej. Trzeba bowiem pamiętać, że w odpowiednich warunkach dokładanie kolejnych kubitów do kwantowego systemu pozwala na wykładniczy wzrost ilości przechowywanej i przetwarzanej informacji. Liczba stanów kwantowych, jakie możemy zapisać w zaledwie 256 kubitach jest większa, niż liczba atomów w Układzie Słonecznym, wyjaśnia Sepher Ebadi, student Graduate School of Arts and Sciences i główny autor badań.
      Już teraz symulator pozwolił na przeprowadzenie obserwacji wielu egzotycznych stanów kwantowych, których nigdy wcześniej nie uzyskano. Naukowcy wykorzystali go też do badania kwantowego przejścia fazowego z niezwykle duża dokładnością, dzięki czemu poznali kolejne szczegóły działania magnetyzmu na poziomie kwantowym. Tego typu eksperymenty pozwalają zarówno udoskonalać komputery kwantowe, jak i opracowywać nowe materiały o egzotycznych właściwościach.
      Twórcy maszyny zbudowali ją w oparciu o opracowaną przez siebie platformę, która w 2017 roku osiągnęła wielkość 51 kubitów. System ten składał się z ultrazimnych atomów rubidu uwięzionych w pułapce i ułożonych w jednowymiarową matrycę za pomocą szczypiec optycznych, na które składały się promienie lasera. W nowym systemie ułożono dwuwymiarową matrycę atomów, dzięki czemu możliwe stało się zwiększenie liczby kubitów z 51 do 256. Za pomocą szczypiec optycznych naukowcy mogą układać atomy we wzory i tworzyć programowalne kształty, np. kwadraty, plastry miodu itp, uzyskując różne interakcje pomiędzy kubitami.
      Głównym elementem całości jest urządzenie zwane przestrzennym modulatorem światła, które jest wykorzystywane do nadawania kształtu optycznej powierzchni falowej, dzięki czemu uzyskujemy setki indywidualnych szczypiec optycznych. To takie samo urządzenie, jak te używane w projektorach wyświetlających obrazy na ekranie, jednak my zaadaptowaliśmy je na potrzeby naszego symulatora kwantowego, wyjaśnia Ebadi.
      Początkowe ułożenie atomów w szczypcach optycznych jest przypadkowe. Naukowcy używają więc drugiej pary szczypiec do przeciągnięcia atomów na zaplanowane pozycje. Dzięki laserom mają całkowitą kontrolę nad pozycją kubitów i mogą nimi manipulować.
      Obecnie trwają prace nad udoskonaleniem systemu poprzez poprawę kontroli nad kubitami i uczynienie go łatwiejszym w programowaniu. Naukowcy szukają też nowych zastosowań dla swojego systemu, od badania egzotycznych stanów materii kwantowej po rozwiązywanie rzeczywistych problemów, z którymi na co dzień się spotykamy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwa niezależne zespoły badawcze stworzyły kwantowe wzmacniacze zdolne do przechowywania multipleksowanych sygnałów, przekazywania splątanych cząstek i pracy na częstotliwościach używanych w telekomunikacji. To bardzo ważny krok w rozwoju skalowalnego kwantowego internetu.
      Kwantowa sieć komputerowa nie tylko byłaby siecią znacznie bardziej bezpieczną, ale również pozwalałaby np. na dystrybucję zadań obliczeniowych pomiędzy komputerami kwantowymi, co z kolei umożliwiłoby na rozwiązywanie niezwykle złożonych problemów.
      Zasadniczym elementem kwantowego internetu będą kwantowo splatane połączenia pomiędzy węzłami takiej sieci. Problem jednak w tym, że tworzenie stanu splątanego przy dużym transferze danych na duże odległości jest bardzo trudne. Wynika to z faktu, że kwantowa informacja ulega degradacji podczas przesyłania, a zasady mechaniki kwantowej nie pozwalają na użycie standardowych wzmacniaczy. Potrzebne są więc wzmacniacze kwantowe, wzmacniające informację i podlegające zasadom fizyki kwantowej.
      Dwie niezależne grupy badawcze, jedna z hiszpańskiego Instytutu Nauk Fotonicznych (ICFO – Institut de Ciències Fotòniques), druga zaś z Uniwersytetu Nauki i Technologii Chin (USTC), pokazały, jak kwantowe układy pamięci mogą posłużyć do budowy praktycznych kwantowych wzmacniaczy.
      Oba zespoły użyły źródeł par fotonów, gdzie jeden z fotonów jest składowany w kwantowej pamięci, a drugi jest wysyłany jako sygnał rozgłaszający i potwierdzający splątanie. Multipleksing, rozumiany tutaj jako możliwość jednoczesnego składowania wielu sygnałów w postaci fotonów o różnych długościach fali jest realizowany za pomocą protokołu kwantowego optycznego grzebienia częstości. Dzięki temu taki system nie musi czekać na udane zakończenie rozgłaszania przed wygenerowaniem kolejnej pary fotonów. Co bardzo ważne, całość pracuje na częstotliwościach używanych obecnie w systemach telekomunikacyjnych, jest więc kompatybilna z już istniejącymi sieciami.
      Hiszpanie stworzyli system, który wykorzystuje pamięć kwantową przechowującą fotony w milionach atomów przypadkowo rozrzuconych w krysztale wzbogaconym metalem ziem rzadkich. Użyli przy tym różnych długości fali, 606 nm dla przechowywania i 1436 nm (częstotliwość telekomunikacyjna) dla rozgłaszania splątania. Ich system może przechowywać sygnały przez 25 mikrosekund zanim je uwolni. Splątanie uzyskiwane jest pomiędzy dwoma układami przechowującymi foton w superpozycji. Układy znajdują się w odległości 10 metrów od siebie.
      Z kolei Chińczycy wykorzystali kwantowe układy pamięci bazujące na kryształach wzbogaconych jonami metali ziem rzadkich. Zbudowali dwa węzły i stację pośrednią pomiędzy nimi. W każdym z węzłów przechowywany jest jeden z pary splątanych fotonów. Jeden z fotonów z pary uwalniany jest po 56 nanosekundach w celu analizy, a drugi przechodzi do stacji pośredniej. Dokonywany jest wspólny dla nich pomiar stanu Bella. Węzły dzieli odległość 3,5 metra.
      Musimy jeszcze pokonać sporo przeszkód technologicznych, mówi lider hiszpańskiej grup badawczej, Hugues de Riedmatten. Chcemy uzyskać lepszą stabilizację częstotliwości czy lepszą kontrolę nad liczoną w setkach nanometrów długością łączy optycznych. Pracujemy nad poprawieniem wydajności źródła,z wydłużeniem czasu przechowywania informacji w kwantowej pamięci i systemami odczytu danych. Zmierzamy w kierunku budowy wielowęzłowej sieci i zwiększenia odległości pomiędzy kwantowymi wzmacniaczami.
      Z kolei Zhou Zongquan z USTC powiedział: przeprowadziliśmy kompletną demonstrację podstawowego połączenia w kwantowym wzmacniaczu. Chińczycy zapowiadają ulepszenia źródła światła w celu zwiększenia tempa uzyskiwania splątania. Dodają, że zanim ich system znajdzie praktyczne zastosowanie, konieczne będzie znaczące poprawienie parametrów kwantowej pamięci.
      Ronald Hanson z Uniwersytetu Technologicznego w Delft chwali prace obu zespołów. Mówi, że to ważny krok w kierunku budowy praktycznych wzmacniaczy kwantowych, a niezwykle ważny jest fakt, że urządzenia pracują z częstotliwościami współczesnych sieci telekomunikacyjnych.
      Pod wrażeniem jest też Rodney Van Meter z japońskiego Keio Univeristy. Oba zespoły osiągnęły coś znaczącego: stworzyły dwie pary splątanych fotonów, przechowały po dwa fotony w różnych układach pamięci oddalonych od siebie na pewną odległość, a dwa kolejne wysłały w tym czasie, by przeprowadzić pomiar.
      Osiągnięcia USTC i ICFO zostały opisane na łamach Nature.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...