Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'siła'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 13 results

  1. Według naukowców, to kobiety jako pierwsze skonstruowały broń, by współzawodniczyć z silniejszymi fizycznie mężczyznami. Badając dzielące z nami większość genów (98%) szympansy, zauważyli, że to głównie samice atakowały inne zwierzęta prymitywnym włóczniami. Akademicy z Uniwersytetu Stanowego Iowa uznają, że prehistoryczne kobiety zaczęły polować z narzędziami, żeby w jakiś sposób zrekompensować sobie mizerniejszy wzrost i krzepę. Kobiety musiały się wykazać kreatywnością, podczas gdy mężczyźni korzystali po prostu ze swoich mięśni — tłumaczy Jill Pruetz, która prowadziła badania w Senegalu. Obserwacje osobników polujących z bronią, w tym szympansic i młodych, skłaniają do ponownego przemyślenia tradycyjnych wyjaśnień, w jaki sposób podobne zachowania rozwinęły się w naszej linii ewolucyjnej. Gdy zdobędziemy więcej informacji o takich działaniach szympansów w ich naturalnym środowisku, może dowiemy się czegoś istotnego o wyzwaniach, którym stawiali czoła nasi przodkowie. Przyglądając się stadu z Fongoli, które zamieszkiwało sawannę, naukowcy zauważyli, że samice obrywały z gałęzi wszystkie liście, a następnie ostrzyły końcówkę poprzez żucie. Później wbijały tak wytworzone włócznie w nory, gdzie potencjalnie mogły spać galago karłowate, nazywane inaczej senegalskimi. Pruetz twierdzi, że niemal codziennie widywała samice z bronią, natomiast nigdy nie zaobserwowała podobnego zachowania u samca.
  2. Wraz z wiekiem wcale nie musimy tracić siły mięśni. Naukowcy z University of Michigan Health Systems doszli do wniosku, że nawet u 80- i 90-latków regularne ćwiczenia pozwalają wzmocnić mięśnie, podczas gdy u niećwiczącego 30-latka będą one coraz słabsze. Ćwiczenia wytrzymałościowe to wspaniały sposób na zachowanie tkanki mięśniowej i siły, dzięki czemu ludzie lepiej funkcjonują w codziennym życiu - mówi doktor Mark Peterson. Pozwala to na łatwiejsze poruszanie się i daje lepszą kontrolę nad ciałem podczas codziennych czynności. Osoby po 50. roku życia, które prowadzą siedzący tryb życia, tracą rocznie około 0,2 kilograma tkanki mięśniowej. Wraz z wiekiem ta utrata przyspiesza. Ale nawet u znacznie młodszych ludzi, 30- czy 40-latków można zauważyć pewne objawy utraty mięśni jeśli nie angażują się w żadne ćwiczenia je wzmacniające - dodaje Peterson. Przeprowadzona przez nas analiza dotychczasowych badań wykazała, że dla dobrego funkcjonowania ciała najważniejsza jet siła mięśni. Niezależnie od tego, w jakim człowiek jest wieku, może wzmacniać mięśnie regularnymi ćwiczeniami. Nawet gdy ma 80 czy 90 lat - stwierdza uczony. Jego zdaniem już po 18-20 tygodniach ćwiczeń wytrzymałościowych, podczas których zwiększa się wagę podnoszonych ciężarów wraz ze zwiększającą się siłą, można zyskać ponad kilogram masy mięśniowej i zwiększyć siłę mięśni o 25-30 procent.
  3. Od 2005 roku specjaliści spekulowali na temat istnienia w świetle sił odpychania i przyciągania. Już jakiś czas temu naukowcy z Yale University udowodnili istnienie siły przyciągania, a teraz odkryli siłę odpychania. Dzięki ich pracom w przyszłości przełącznikami w układach scalonych będzie można sterować tylko i wyłącznie za pomocą światła, bez pośrednictwa elektryczności. To uzupełnia obraz. Udowodniliśmy, że w świetle istnieje dwubiegunowa siła, w skład której wchodzą siły przyciągania i odpychania - mówi Hong Tang, szef zespołu badawczego. Już wcześniej naukowcy pracujący pod jego kierunkiem pokazali, że za pomocą światła można poruszyć nanoprzełącznik, przyciągając go w kierunku źródła światła. Nie byli jednak w stanie odepchnąć go, by powrócił do pierwotnej pozycji, Teraz stało się to możliwe. Trzeba przy tym podkreślić, że odkryte przez zespół Tanga siły są czym innym, niż znane ciśnienie promieniowania światła, które pozwala popychać przedmioty. W celu uzyskania siły odpychającej, naukowcy rozdzielili promień światła podczerwonego na dwa osobne promienie i wymusili na nich przebycie różnej długości drogi w falowodzie. W ten sposób fazy fali obu promieni przestały się ze sobą zgadzać i wytworzyła się siła odpychania. Uczeni są w stanie kontrolować tę siłę - im większa różnica pomiędzy fazami, tym mocniejsze odpychanie. Możemy kontrolować interakcję pomiędzy promieniami. To nie jest możliwe w otwartej przestrzeni. Można to osiągnąć tylko w falowodach w skali nano, które umieszczone są blisko siebie na chipie - mówi Mo Li, jeden z autorów projektu. Działające siły są bardzo ciekawe, gdyż działają inaczej niż siły pomiędzy naładowanymi obiektami. Obiekty o przeciwnym ładunku przyciągają się, tymczasem promienie światła o różnej fazie odpychają się - dodał Wolfram Pernice. Zastosowanie światła w miejsce elektryczności przyniesie ze sobą liczne korzyści. Urządzenia telekomunikacyjne będą działały szybciej, a jednocześnie zużyją mniej prądu. Ponadto w świetlnym układzie scalonym niemal nie będą występowały interferencje.
  4. Czy czynność tak prosta, jak wodzenie palcem po płaskiej powierzchni, może stać się obiektem poważnych badań? Jak najbardziej! Mało tego - studiowanie tak banalnego ruchu może dostarczyć zaskakujących informacji na temat funkcjonowania naszych mózgów. Autorami interesującego eksperymentu są naukowcy z zespołu kierowanego przez Francisco Valero-Cuevasa z University of Southern California. Ośmioro uczestników studium poproszono o to, by oparli podstawę dłoni na twardej powierzchni, a następnie palcem wskazującym nacisnęli z całej siły na płytkę podłączoną do miernika nacisku. Chwilę później pomiary wykonano ponownie, lecz tym razem ochotnicy mieli za zadanie naciskać na płytkę i jednocześnie przesuwać palec po jej powierzchni. Aby im to ułatwić, uczestników wyposażono w specjalne "naparstki", pokryte, podobnie jak płytka, warstwą teflonu. W swoim raporcie badacze przyznają, że spodziewali się, iż zwiększanie szybkości, z jaką palec przesuwa się po powierzchni płytki, będzie wymuszało proporcjonalne zmniejszanie wywieranego na nią nacisku. Miałoby to wynikać z budowy mięśni, które, jak się zdawało, nie są w stanie utrzymać pełnego skurczu przy jednoczesnym poruszaniu się innych muskułów. Ku zaskoczeniu autorów studium okazało się jednak, że palec "zajmujący się" wyłącznie naciskaniem na płytkę rzeczywiście wywiera na nią większy nacisk, lecz wprawiony w ruch naciskał na powierzchnię ze stałą siłą, niezależną od tego, jak szybko się poruszał. Skąd bierze się to niespodziewane zjawisko? Zdaniem autorów wynika ono z działania nie mięśni, lecz układu nerwowego. Gdy zostaje on zaangażowany w poruszanie palcem, nie jest w stanie zachować pełnej kontroli nad mięśniami odpowiedzialnymi za nacisk. "Zaoszczędzone" w ten sposób możliwości zostają wówczas wykorzystane do kontrolowania ruchu na boki. Z badań przeprowadzonych przez zespół Valero-Cuevasa można wysunąć przewrotny wniosek, że choć ludzkie mózgi pozwoliły nam na latanie w kosmos, nie są one w stanie poradzić sobie z... poruszaniem pojedynczym palcem! Na całe szczęście jesteśmy jednak na tyle bystrzy, by próbować wykorzystać zdobytą wiedzę. Jak oceniają autorzy, może się ona przydać m.in. producentom robotów oraz lekarzom zajmującym się badaniami z zakresu neurologii.
  5. Podczas poruszania się po płaskich powierzchniach węże wykorzystują zarówno tarcie łusek, jak i redystrybucję ciężaru ciała. Łuski na brzuchu są ułożone w taki sposób, że zapobiegają cofaniu się oraz ześlizgiwaniu na boki. Nadają ruchowi pożądany kierunek, dzięki czemu wąż może się przemieszczać jak pojazdy na kołach czy człowiek na nartach biegowych bądź łyżwach. We wszystkich tych przypadkach posuwanie się do przodu wymaga mniej pracy niż ślizganie się na boki – wyjaśnia szef zespołu David Hu z Georgia Institute of Technology, który współpracował m.in. z naukowcami z New York University. Ekipa skupiła się przede wszystkim na anizotropii tarciowej łusek brzucha, czyli na oporze związanym ze ślizganiem się w określonych kierunkach. Już wcześniej sugerowano, że ta ich właściwość może odgrywać ważną rolę w poruszaniu się po płaskich powierzchniach, lecz dotąd jej jeszcze w pełni nie rozpoznano. Na początku inżynierowie stworzyli teoretyczny model ruchów węża. Określił on prędkość środka ciężkości gada jako funkcję prędkości i skali wygięć. Model sugerował, że ruch pojawia się wskutek interakcji tarcia powierzchniowego i sił działających wewnątrz ciała zwierzęcia. By potwierdzić lub obalić te przypuszczenia, akademicy zmierzyli opór ślizgowy łusek węża podczas poruszania się po płaskich i nachylonych powierzchniach. Eksperymenty nagrano, zastosowano też fotografię poklatkową. Okazało się, że model był trafny i sprawdzał się w większości przypadków.
  6. Kobiety planujące niektóre rodzaje treningu powinny rozważyć odstawienie doustnych leków antykoncepcyjnych - twierdzą badacze z Teksasu oraz Pensylwanii. Przeprowadzone przez nich studium wykazało, że stosowanie doustnych preparatów chroniących przed niechcianą ciążą utrudnia przyrost masy mięśniowej. Do udziału w eksperymencie zaproszono 73 kobiety w wieku 18-31 lat. Uczestniczki zostały rozdzielone na dwie grupy - do pierwszej przypisano 34 panie przyjmujące doustne środki antykoncepcyjne, zaś do drugiej - 39 kobiet niestosujących leków z tej grupy. Członkinie obu grup brały udział w intensywnym programie treningowo-dietetycznym, którego celem było zwiększenie masy mięśniowej. Aby ułatwić przyrost mięśni, kobiety przyjmowały około 1,1 grama białek na kilogram masy ciała (0,5 g białka na każdy funt masy), czyli ilość o 1/3 przekraczającą standardowe zalecenia żywieniowe. Program treningowy był nadzorowany przez zawodowego fizjologa i składał się z kilku ogólnorozwojowych ćwiczeń siłowych, wymagających użycia ok. 75% maksymalnej siły mięśni. Wyniki doświadczenia nie pozostawiają wątpliwości. Po dziesięciu tygodniach treningu panie przyjmujące hormonalne leki antykoncepcyjne zdołały zwiększyć masę swoich mięśni średnio o kilogram, podczas gdy u ich koleżanek niekorzystających z pigułek stwierdzono przyrost masy mięśniowej o 1,6 kg. Obniżone tempo wzrostu mięśni wykazano także dzięki badaniom stężenia hormonów. Jak wykazali amerykańscy badacze, krew kobiet przyjmujących preparaty antykoncepcyjne zawierała znacznie obniżoną ilość trzech istotnych hormonów anabolicznych: dehydroepiandrosteronu (DHEA) i jego siarczanu (DHEAS) oraz insulinopodobnego czynnika wzrostu 1 (ang. insulin-like growth factor 1 - IGF1). Z drugiej strony, w organizmach pań z tej grupy stwierdzono podwyższony poziom kortyzolu, jednego z najważniejszych hormonów stymulujących procesy kataboliczne, czyli rozpad złożonych struktur na prostsze składniki. Jak przyznają autorzy studium, skala zaobserwowanego zjawiska przeszła ich oczekiwania. Nie spodziewali się bowiem, że różnica przyrostu masy mięśniowej pomiędzy obiema grupami sięgnie aż 60%. Mimo to, zalecają ostrożne traktowanie uzyskanych rezultatów i powtórzenie badań przez inne zespoły.
  7. Szympansy są, zdaniem niektórych, nawet 4-krotnie silniejsze od ludzi, pomimo że wzrostem i wagą nie różnią się od nas. Siłę zwykle przypisujemy rozwojowi mięśni, jednak Alan Walker, profesor biologii z Penn State University, uważa, że w przypadku małp naczelnych układ mięśniowy odgrywa drugorzędną rolę. Jego zdaniem, za większą siłę małp odpowiada ich układ nerwowy. Walker sądzi, że sprawuje on znacznie mniejszą kontrolę nad mięśniami, niż układ nerwowy człowieka. Dlatego szympansy dysponują dużo większą siłą, a człowiek potrafi wykonywać bardziej precyzyjne ruchy. Wcześniejsze badania wykazały, że w kręgosłupach szympansów znajduje się znacznie mniej szarej materii niż u człowieka. Szara materia zawiera bardzo dużo neuronów motorycznych, które kierują ruchami mięśni. Tak więc u ludzi uruchomienie mniejszej liczby neuronów powoduje uruchomienie mniejszej liczby mięśni, co daje nam nad nimi bardziej precyzyjną kontrolę. U szympansów jest to więcej mięśni, co oznacza większą siłę. Dlatego też małpy są mniej wytrzymałe na wysiłek niż ludzie. Nie potrafią bowiem stopniowo w zależności od potrzeb uruchamiać mięśni. Z kolei ludzie w większości przypadków nie są w stanie skorzystać ze wszystkich mięśni co sugeruje, zdaniem Walkera, istnienie jakiegoś rodzaju hamowania w centralnym układzie nerwowym.
  8. Kraby skrzypki, które za pomocą jednostronnie przerośniętych szczypiec wabią samice i walczą z innymi samcami, bywają wielkimi kłamczuchami. Oceniając ich siłę, nie zawsze można polegać na sygnałach wzrokowych. Po utracie szczypiec odtwarzają bowiem organ tej samej wielkości, ale z wykorzystaniem mniejszej ilości materiału. Oznacza to, że broń nie jest tak groźna, na jaką wygląda (Functional Ecology). Szkopuł polega na tym, że przeciwnicy nie są w stanie odróżnić pełnowartościowych szczypiec od wersji ekonomicznej. Samce oceniają się przed walką, a demonstrowanie wielkich szczypiec jest ważną częścią tego rytuału – wyjaśnia dr Simon Lailvaux z Uniwersytetu Nowej Południowej Walii. Zespół określał gabaryty większych szczypiec i dwa wskaźniki umiejętności bitewnych: 1) siłę szczypiec oraz 2) zdolność opierania się próbom wypchnięcia z własnego tunelu. W przypadku pierwotnych szczypiec wielkość organu pozwalała wyciągać trafne wnioski na temat prawdopodobieństwa przegranej. Tego samego nie dało się już jednak powiedzieć o szczypcach zregenerowanych. Australijczycy porównują "podrabiane" szczypce do blefów stosowanych przez pokerzystów. Mając kiepskie karty, dobry gracz potrafi przekonać przeciwników przy stole, że idzie mu nieźle. Podobnie krab ze słabymi, ale dobrze prezentującymi się organami. Strategia nie sprawdza się tylko w jednym przypadku – podczas ustanawiania terytorium. Wtedy zwierzę musi walczyć ze wszystkimi napotkanymi samcami. Sygnały nieuczciwości w świecie zwierząt trudno badać, ponieważ z definicji są pomyślane tak, by nie dało się ich, przynajmniej zbyt szybko, wykryć. Jedno z licznych najwyraźniej kłamstewek udało się jednak wykryć...
  9. Osłabienie mięśni w większym stopniu wiąże się ze zmniejszeniem aktywności fizycznej, niż stanowi naturalną część procesu starzenia się (Medicine & Science in Sports & Exercise). Dain LaRoche z University of New Hampshire porównał początkową siłę 25 kobiet w wieku od 18 do 33 lat i 24, które miały od 65 do 84 wiosen. Wszystkie uczestniczyły w 8-tygodniowym treningu wytrzymałościowym. Na celownik wzięto mięsień zlokalizowany w udzie, a mianowicie prostownik stawu kolanowego. Fizjolodzy podkreślają, że jest on kluczowy dla prawidłowego chodzenia czy wstawania z krzesła lub fotela. Po 2 miesiącach ćwiczeń okazało się, że siła mięśniowa starszych kobiet wzrosła w identycznym zakresie, co u młodszych koleżanek. Co więcej, osiągnęły one możliwości nieaktywnych fizycznie młodych osób z grupy kontrolnej.
  10. Samce mogą demonstrować swoją siłę i możliwości rozrodcze na wiele sposobów. Altanniki budują altanki, jelenie przechwalają się porożem, a elandy (Taurotragus oryx) uderzają o siebie kolanami. Głębokość dźwięku jest determinowana przez gabaryty zwierzęcia (BMC Biology). Naukowcy z Londyńskiego Stowarzyszenia Zoologicznego i Uniwersytetu Kopenhaskiego nagrali te niesamowite odgłosy podczas pobytu w Kenii. Opowiadają, że w ten sposób samiec zawiadamia inne samce, jak radziłby sobie w ewentualnej walce, co pozwala ustalić jego prawa do samic. Wydawałoby się wytwarzany tą metodą dźwięk nie może być zbyt głośny, ale to nieprawda. Słychać go z odległości nawet kilkuset metrów. Badacze sądzą, że powstaje podczas przesuwania się ścięgna po którejś z kości. Jakob Bro-Jorgensen tłumaczy, że w takiej sytuacji ścięgno zachowuje się jak szarpana struna. Częstotliwość jest odwrotnie proporcjonalna do jej długości i średnicy. W wyglądzie antylopy można znaleźć jeszcze kilka wskazówek odnośnie do predyspozycji i właściwości danego osobnika. Z szyi samca zwisa luźny fałd skóry, który pozwala określić wiek, a ciemne zabarwienie sierści stanowi czytelny sygnał nt. stopnia przejawianej agresji.
  11. Największa jaszczurka świata, waran z Komodo (Varanus komodoensis), cieszy się złą sławą. Opowiada się o zagrożeniach związanych z jej ugryzieniem, ale niebezpieczeństwo wiąże się raczej z działaniem bakterii ze śliny gada, a nie z siłą samego ukąszenia. Okazuje się bowiem, że olbrzym gryzie słabiej od domowego kota... Jak donosi serwis National Geographic News, naukowcy z Uniwersytetu Nowej Południowej Walii wykorzystali modele komputerowe, aby przeanalizować możliwości okazu warana przechowywanego w Muzeum Australijskim w Sydney. Szczęki gada nie są zaprojektowane z myślą o kruszeniu. Siła ugryzienia jest niewiarygodnie mała jak na tak dużą jaszczurkę – mniejsza, niż spodziewalibyśmy się po przeciętnym kocie domowym – twierdzi Stephen Wroe. Gdyby waran naprawdę spróbował zmiażdżyć ofiarę szczękami, tak jak to robią krokodyle, połamałby sobie czaszkę. Peter Harlow, specjalista ds. gadów z Taronga Zoo w Sydney, sądzi, że opisane odkrycie potwierdza to, co zoolodzy od dawna wiedzą o zachowaniu waranów z Komodo. Nie oczekiwaliśmy, że jaszczurki będą mieć miażdżący zgryz, ale nikt dotąd nie badał szczegółowo tego zagadnienia. Dobrze więc, że ktoś to określił ilościowo. Szefowa zespołu, Karen Moreno, wyjaśnia, że tę samą technikę określania parametrów ciała można zastosować do gatunków, które już wyginęły. Obecnie akademicy zajmują się prehistorycznymi przodkami waranów, m.in. allozaurami i gigantozaurami. Chociaż waran nie dysponuje możliwościami szczęk krokodyla, natura wyposażyła go w parę cech, które uczyniły z niego drapieżnika. Gad ma co prawda lekką czaszkę, ale jej budowa i rodzaj "użytego" materiału zostały zoptymalizowane (Journal of Anatomy). Porównując czaszkę warana do konstrukcji mostu, Wroe tłumaczy, że do opierania się działaniu sił wykorzystano minimalną ilość materiału. Model komputerowy wykazał, że różne fragmenty czaszki cechuje różna gęstość. Niektóre części mają strukturę gąbczastą. Dzięki temu są elastyczne i jaszczurka może szerzej otworzyć pysk. Ponadto w połączeniu z ostrym językiem zapewniają one efekt dźwigni. Układ ten jest świetnie przystosowany do gryzienia i ciągnięcia. Kiedy więc waran jednocześnie gryzie i ciągnie, wymaga to włożenia mniejszej siły, niż gdyby gryzł, nie ciągnąc. Wykorzystując łącznie ostre zęby, delikatną czaszkę i silne mięśnie karku, jaszczurka działa na zasadzie otwieracza do butelek. Waran wyrywa rany w ciele ofiary i ta umiera z powodu utraty krwi. To dzięki temu może upolować zwierzęta sporo od siebie większe.
  12. lt;!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } --> Naukowcy zatrudnieni przez firmę IBM po raz kolejny popisali się umiejętnością manipulowania pojedynczymi atomami. Tym razem jednak zamiast układania napisów, osiągnęli coś znacznie ważniejszego: wraz z kolegami z niemieckiego University of Regensburg zmierzyli siły wymagane do przesuwania atomów po powierzchni kryształów. Dzięki nowo zdobytej wiedzy badacze są o krok bliżej projektowania i konstruowania nanomechanizmów, które m.in. zastąpią dzisiejsze układy scalone. Badania prowadzone za pomocą mikroskopu sił atomowych (AFM – Atomic Force Microscope) pozwolą określić, które atomy i cząsteczki mocno trzymają się powierzchni, a które słabo. Pierwsze posłużą za szkielet nanomechanizmów, drugie natomiast będą mogły pełnić rolę nośnika pamięci czy przełączników. Dotychczas sprawdzono na przykład, że do przesunięcia atomu kobaltu po powierzchni platyny wymagana jest siła 210 pikonewtonów (210×10-12 N), a jeśli powierzchnię wykonano z miedzi – jedynie 17 pN. Ponadto naukowcy odkryli, że siły drastycznie się różnią, jeśli zamiast atomu przesuwana jest cała cząsteczka. Niezwykłą precyzję pomiaru osiągnięto dzięki zastosowanej w mikroskopie specjalnej konstrukcji elastycznego "dźwigaru", na którym umieszczono końcówkę skanującą powierzchnię próbki. Element ten został wykonany z kryształu kwarcu, podobnego do tego, jaki znajduje się w zegarkach elektronicznych. Gdy końcówka mikroskopu zbliża się do jednego z atomów, działająca na nią siła powoduje niewielką zmianę częstotliwości rezonansowej kwarcu. Ponieważ mikroskop potrafi również przemieszczać atomy, pomiar wspomnianej częstotliwości pozwala oszacować zarówno siły działające na końcówkę mikroskopu, jak i te wymagane do przenoszenia atomów. Zanim naukowcy przystąpią do budowania nanomechanzimów, czeka ich jeszcze sporo pracy "u podstaw". Muszą oni skatalogować siły przyciągania poszczególnych atomów i cząstek do różnych powierzchni. Bez tych wiadomości tworzenie jakichkolwiek struktur atomowych będzie miało równie duże szanse powodzenia, co budowanie mostu przez osoby nie znające właściwości używanych materiałów.
  13. Zamki z piasku: banalne, wznoszone przez dzieci konstrukcje, utrzymujące kształt dzięki równie banalnemu dodawaniu wody do budulca. Okazuje się jednak, że potrzebne były poważne badania naukowe, aby w pełni wyjaśnić, dlaczego zamki stoją, mimo dość swobodnie dobieranych proporcji wody i piasku. Zadania tego podjęli się badacze z Max Planck Institute for Dynamics and Self-Organization w Getyndze. Za pomocą promieniowania rentgenowskiego powstającego w synchrotronie oraz aparatury mikroskopowej wykonali oni serię zdjęć, dzięki którym odtworzyli trójwymiarową strukturę piasku o różnych stopniach nasycenia wodą. Okazało się, że ziarna piasku są sklejane za pomocą "mostów" wodnych o kształcie przypominającym trąbki połączone cieńszymi końcami. Dodanie większej ilości wody nie wpływa znacząco na właściwości takiego materiału, ponieważ zmienia się w nim jedynie kształt połączenia, a ten w stosunkowo niewielkim stopniu jest związany z działającymi siłami. Dopiero po nasyceniu mieszaniny cieczą mosty ulegają połączeniu, a piasek z mokrego staje się półpłynny. Wbrew pozorom, badania te nie zostały podjęte jedynie dla zabicia czasu. Dzięki nim naukowcy będą w stanie dokładniej kontrolować mieszanie granulatów z płynami, możliwe stanie się również przewidywanie tak niebezpiecznych zjawisk, jak obsunięcia ziemi.
×
×
  • Create New...