Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wykorzystali neutrino do przesłania wiadomości

Rekomendowane odpowiedzi

Naukowcy z University of Rochester i North Carolina State University jako pierwsi w historii wykorzystali neutrino do przesłania wiadomości. Uczeni wykorzystali znajdujące się w Fermilab urządzenia NuMI (NeUtrino beam at the Main Injector) do wygenerowania 25 impulsów. Przerwy pomiędzy nimi wynosiły około 2 sekundy, a w ramach każdego impulsu wysłano 1013 neutrin.

Impulsy zostały wysłane do wykrywacza MINERvA, znajdującego się w grocie w odległości około kilometra od NuMI. Neutrina, zanim dotarły do wykrywacza, musiały przejść przez 240 metrów skały.

W strumieniu neutrin w postaci zer i jedynek zakodowano wyraz „neutrino“. Jego przesłanie trwało około 2,5 godziny. W tym czasie MINERvA pracował z połową mocy, gdyż planowane jego jego wyłączenie, a ponadto wykonywał swoje standardowe zadania.

Oczywiście zarówno tempo przesyłania danych, jak i wymagany do tego sprzęt - sam wykrywacz MINRvA waży 170 ton - oznaczają, że obecnie neutrino nie można wykorzystać w praktyce. Jednak nie taki był cel eksperymentu. Naukowcy chcieli przetestować krążący od dłuższego czasu pomysł użycia neutrino w celu przekazywania informacji. Neutrino, w przeciwieństwie do wszelkich innych wykorzystywanych medium, ma bowiem tę zaletę, że praktycznie nie istnieją dlań żadne fizyczne przeszkody. Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Neutrino, w przeciwieństwie do wszelkich innych wykorzystywanych medium, ma bowiem tę zaletę, że praktycznie nie istnieją dlań żadne fizyczne przeszkody. Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.

 

... dodajmy po drugiej stronie globu , na księżycu . Może by tak przeanalizować dane neutrinowe ze słońca i poszukać kodu w systemie trójkowym (elektronowe, mionowe, taonowe) ??

 

Gdzieś czytałem że szafiry dość skutecznie łapią neutrina.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

chyba coś nie tak, słowo 'neutrino' ma 8 liter, a w alfabecie jest 24, więc potrzeba 5 bitów (32 możliwości maksymalnie) aby zakodować jedną literę, a 25 impulsów równa się 5 bitom, a więc powstanie conajwyżej 'neutr'.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

chyba coś nie tak, słowo 'neutrino' ma 8 liter, a w alfabecie jest 24, więc potrzeba 5 bitów (32 możliwości maksymalnie) aby zakodować jedną literę, a 25 impulsów równa się 5 bitom, a więc powstanie conajwyżej 'neutr'.

 

Sadze, ze 25 impulsow to raczej 25 kombinacji impulsow (0/1) czyli 24 litery + znak konca lub spacja

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie widzę sprzeczności. Niekoniecznie 1 impuls=1 bit.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Sadze, ze 25 impulsow to raczej 25 kombinacji impulsow (0/1) czyli 24 litery + znak konca lub spacja

Ja tam się nie znam na właściwościach neutrin, ale oprócz tego co zauważył mikroos, może zastosowali jakieś specjalne kodowanie, lub kompresję, obrazek to sugeruje.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.

Raczej w najgłębiej zanurzonej atomowej łodzi podwodnej ( po drugiej stronie globu) :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Hmm:

neutrino - 8 znaków.

Do tego minimum 5 bitów na znak.

czyli 40 bitów.

Ale:

impuls - przerwa - impuls - impuls - przerwa - przerwa.

3 impulsy - 6 bitów.

Już rozumiecie? 25 impulsów to może być i 50 bitów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wydaje mi się, że do praktycznego zastosowania droga jeszcze daleka. Ale mogę się mylić...

;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje nawet 100 bilionów tych cząstek subatomowych. Mimo tej obfitości neutrino jest najsłabiej poznaną cząstką elementarną. Bardzo słabo oddziałuje ono z materią, dlatego też trudno jest je zarejestrować i badać. Tymczasem fizycy od kilkunastu lat coraz bardziej interesują się neutrinami, gdyż mogą one wyjaśnić wiele tajemnic, na przykład, dlaczego we wszechświecie jest więcej materii niż antymaterii.
      Jedną z pierwszych cech neutrin, jakie powinniśmy poznać, są ich rozmiary. Znajomość tego parametru pozwoli na zaprojektowanie bardziej precyzyjnych detektorów, dzięki którym można będzie lepiej zbadać neutrina. Międzynarodowy zespół naukowy opisał na łamach Nature opracowaną przez siebie metodę pomiaru rozmiarów neutrino elektronowego oraz uzyskane wyniki.
      Uczeni przeprowadzili eksperyment, podczas którego obserwowali radioaktywny rozpad berylu (7Be). Rozpada się on do litu (7Li). Podczas tego procesu ma miejsce wychwyt elektronu, kiedy to elektron atomu jest przechwytywany przez proton z jego jądra. Powstaje w ten sposób neutron pozostający w jądrze nowego pierwiastka – litu-7 – oraz emitowane jest neutrino elektronowe.
      Uwalniana jest energia, która odrzuca nowo powstały atom litu-7 w jednym kierunku, a neutrino w przeciwnym. Badacze obserwowali ten proces w akceleratorze, w którym umieścili bardzo czułe detektory neutrin. Dzięki temu mogli zbadać moment pędu atomu litu i na tej podstawie obliczyć rozmiary neutrino.
      Pomiar oddaje kwantową naturę neutrino. Co oznacza, że „rozmiar” należy tutaj rozumieć jako pewien stopień niepewności co do przestrzeni zajmowanej przez neutrino. Z obliczeń wynika, że dolną granicą rozmiarów pakietu falowego neutrino elektronowego jest 6,2 pikometrów. To oznacza, że pakiet falowy neutrin jest znacznie większy niż pakiet falowy typowego jądra atomowego, który liczy się w femtometrach. Dla jądra wodoru jest to ok. 1,2 fm, dla jądra węgla, ok 3,5 fm.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV).
      KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu.
      Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina.
      Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington.
      Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą  prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Fermi National Accelerator Laboratory (Fermi Lab), jednej z najbardziej zasłużonych instytucji dla rozwoju fizyki cząstek, trwa właśnie budowa ostatniego z wielkich detektorów, który ma badać neutrino i szukać dowodów na istnienie fizyki poza Modelem Standardowym. Zespół detektorów powstaje w ramach Short-Baselina Neutrino Program.
      Projekt składa się ze źródła neutrin i trzech detektorów ustawionych w linii prostej. Short-Baseline Near Detector (SBND), którego budowa właśnie się rozpoczęła, znajdzie się 110 metrów za obszarem, w którym strumień protonów będzie uderzał w cel, generując strumień neutrin mionowych. W odległości 360 metrów za SBND znajduje się MicroBooNE. Urządzenie to rozpoczęło pracę już w 2015 roku. Za MicroBooNE, w odległości 130 metrów, stoi zaś ICARUS, który rozpocznie pracę jeszcze tej jesieni.
      Podróżujące przez przestrzeń neutrino podlega oscylacjom, zmienia się pomiędzy trzema różnymi rodzajami: neutrinem mionowym, taonowym i elektronowym. I właśnie te oscylacje mają badać SBND, MicroBooNE i ICARUS. Jeśli okazałoby się, że istnieje czwarty rodzaj neutrin lub też badane neutrina zachowywałyby się w inny sposób, niż obecnie się przewiduje, detektory powinny to wykryć i być może fizyka wyjdzie poza Model Standardowy.
      Czujniki detektora SBND będą zawieszone w zbiorniku z płynnym argonem. Gdy neutrino trafi do zbiornika i zderzy się z atomem argonu, powstaną liczne cząstki oraz światło. Zostaną one zarejestrowane przez czujniki, a analizy sygnałów pozwolą fizykom na precyzyjne odtworzenie trajektorii wszystkich cząstek powstałych w wyniku kolizji. Zobaczymy obraz, który pokaże nam olbrzymią liczbę szczegółów w bardzo małej kali. W porównaniu z wcześniejszymi eksperymentami otworzy nam się naprawdę nowe spektrum możliwości, mówi Anne Schukraft, koordynatorka techniczna projektu.
      Wewnątrz SBND znajdą się trzy wielkie elektrody. Dwie anody i katoda. Każda z nich będzie mierzyła 5x4 metry. Natężenie pola elektrycznego pomiędzy katodą a każdą z anod wyniesie 500 V/cm. Anody zostaną umieszczone na przeciwnych ścianach pomieszczenia w kształcie sześcianu. Będą one przechwytywały elektrony, a znajdujące się za nimi czujniki będą rejestrowały fotony. W środku detektora umieszczona zostanie folia spełniająca rolę katody. Zamontowano ją pod koniec lipca, a w najbliższych dniach ma zostać ukończony montaż pierwszej anody.
      Całość, gdy zostanie ukończona, będzie ważył ponad 100 ton i zostanie wypełniona argonem o temperaturze -190 stopni Celsjusza. Komora będzie znajdowała się w stalowym kriostacie o izolowanych ścianach, którego zadaniem będzie utrzymanie niskiej temperatury wewnątrz. Skomplikowany system rur będzie ciągle filtrował argon, by utrzymać go w czystości.
      SBND to przedsięwzięcie międzynarodowe. Poszczególne elementy systemy powstają w wielu krajach, przede wszystkim w USA, Wielkiej Brytanii, Brazylii i Szwajcarii. Schukraft przewiduje, że nowy detektor ruszy na początku 2023 roku.
      Gdy prace nad SBND się zakończą, detektor będzie pracował razem z MicroBooNE i ICARUSEM. Naukowcy chcą przede wszystkim poszukać dowodów na istnienie neutrina sterylnego, cząstki, która nie wchodzi w interakcje z oddziaływaniami słabymi. Już wcześniej, podczas eksperymentów prowadzonych w Liquid Scintillator Neutrino Detector w Los Alamos National Lab i MiniBooNE w Fermilab odkryto sygnały, które mogą wskazywać na istnienie takiej cząstki.
      Pomysł polega na tym, by umieścić detektor naprawdę blisko źródła neutrin, w nadziei, że uda się złapać ten typ neutrina. Następnie jest kolejny detektor, a dalej jeszcze jeden. Mamy nadzieję, że zobaczymy oscylacje sterylnego neutrina, wyjaśnia Rober Acciarri, współdyrektor prac nad budową detektorów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...