Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Promieniowanie kosmiczne i Słońce przyspieszają nukleację areozoli

Recommended Posts

Aktualizacja: artykuł opublikowany w piśmie „Nature", został różnie zinterpretowany przez media. Jednak pola do interpretacji nie pozostawiają słowa Jaspera Kirkby'ego, który stwierdził, że przeprowadzone przez niego i jego kolegów badania nie mówią nic o możliwym wpływie promieniowania kosmicznego na chmury i klimat, ale są bardzo ważnym pierwszym krokiem w zrozumieniu tego zagadnienia.

Wstępne wyniki wykazały bowiem, że promieniowanie kosmiczne ma spory wpływ na nukleację, że wysokoenergetyczne protony przyczyniają się do co najmniej 10-krotnego zwiększenia tempa nukleacji aerozoli, jednak powstające w ten sposób cząsteczki są zbyt małe by mogły posłużyć za zaczątek chmur. Eksperyment wykazał, że na wysokości kilku kilometrów do procesu nukleacji wystarczają para wodna i kwas siarkowy, a proce ten jest znacznie przyspieszany promieniowaniem kosmicznym. Na wysokości do 1 kilometra nad ziemią konieczna jest jeszcze obecność amoniaku.

Co najważniejsze, badania CLOUD pokazały, że para wodna, kwas siarkowy i amoniak, nawet "napędzane" promieniowaniem kosmicznym, nie wyjaśniają zachodzącego w atmosferze procesu formowania się areozoli. Stąd wniosek, że zaangażowane weń muszą być jeszcze inne składniki.

Jak zatem widzimy, pierwsze rezultaty uzyskane w ramach prowadzonego przez CERN eksperymentu CLOUD - Cosmics Leving Outdoor Droplets - nie sugerują (jak wcześniej informowaliśmy) że obecne modele klimatyczne powinny być znacznie zmienione. Z badań wynika jedynie, że promieniowanie z kosmosu odgrywa znacznie większą niż przypuszczano rolę w nukleacji aerozoli, jednak nie oznacza to jeszcze, że czynniki te prowadzą do formowaniu się chmur nad naszą planetą.

Odkrycie CERN-u wpisuje się w polityczną walkę o określenie przyczyn globalnego ocieplenia, dlatego też naukowcy starają się przedstawić tylko i wyłącznie wyniki badań i nie podawać ich interpretacji. Indukowana przez jony nukleacja objawia się ciągłą produkcją nowych cząsteczek, które trudno jest wyizolować w czasie obserwacji atmosfery, gdyż istnieje bardzo dużo zmiennych. Jednak zjawisko to zachodzi na masową skalę w troposferze - mówi Jasper Kirkby, fizyk z CERN-u.

Naukowcy doszli do takich wniosków wykorzystując akcelerator Proton Synchotron do badania zjawiska nukleacji z użyciem różnych gazów i temperatur.

Ojcem teorii o Słońcu jako pośredniej przyczynie globalnego ocieplenia, w którym rolę odgrywa interakcja wiatru słonecznego i promieniowania kosmicznego, jest duński fizyk Henrik Svensmark. Jego zdaniem Słońce to jeden z czterech czynników odpowiedzialnych za zmiany klimatyczne. Trzy pozostałe to wulkany, zmiany w stanie klimatu do których doszło w 1977 roku oraz emisja zanieczyszczeń przez człowieka.

Doktor Kirkby, który opisał dokładnie tę teorię w 1998 roku mówił wówczas, że promieniowanie kosmiczne odpowiada prawdopodobnie za połowę lub nawet całość wzrostu temperatury na Ziemi w ciągu ostatnich 100 lat.

Jak dotychczas nie udało się tej tezy udowodnić.

Share this post


Link to post
Share on other sites

Interesujące, z tego co sobie przypominam większa pokrywa chmur oznacza obniżenie temperatury globalnej, a jeśli promieniowanie jest głównym ich źródłem to obecny okres niskiej aktywności słońca sprzyja mniejszej pokrywie. A więc po raz pierwszy coś w tej dyskusji nabiera sensu.

Share this post


Link to post
Share on other sites

Gdzieś ostatnio czytałem o tej teorii i tak ogólnie chodzi w niej o to, że przy niskiej aktywności słońca, a więc i przy niskim natężeniu wiatru słonecznego, do ziemi dociera znacznie więcej promieniowania kosmicznego, które powoduje wzrost ilości chmur i przez to obniżanie temperatury.

 

Przy dużej aktywności słońca cząstki z wiatru słonecznego powodują, że cząstki promieniowania kosmicznego są rozpraszane (zdmuchiwane?) przez co ilość i grubość chmur jest znacznie mniejsza i temperatury rosną.

Share this post


Link to post
Share on other sites

Ale czy wiatr słoneczny nie wywołuje tego samego zjawiska co promieniowanie (czyli wiatr?) kosmiczne? Bo w takim przypadku na pewno gęstość wiatru słonecznego jest daleko większa od kosmicznego.

Share this post


Link to post
Share on other sites

Cząsteczki zanieczyszczeń, w tym dwutlenku węgla również są źródłem nukleacji. W ostatnich 200 latach ilość CO2 wzrosła z 280 do 370 ppm. Czy aktywność słońca również wzrosła o 1/3 ?

Wydaje mi się, że do rewelacji przedstawionych w artykule należy podejść z ogromną rezerwą.

Nawiasem mówiąc - artykuł sponsorowany przez producentów CO2 :)

Share this post


Link to post
Share on other sites
nie mówią nic o możliwym wpływie promieniowania kosmicznego na chmury i klimat, ale są bardzo ważnym pierwszym krokiem w zrozumieniu tego zagadnienia. 
Nie dziwi nic , że promy spadają, cud że satelity wiszą, o księżycu nie wspomnę.

Share this post


Link to post
Share on other sites

Cząsteczki zanieczyszczeń, w tym dwutlenku węgla również są źródłem nukleacji. W ostatnich 200 latach ilość CO2 wzrosła z 280 do 370 ppm. Czy aktywność słońca również wzrosła o 1/3 ?

A zachmurzenie, temperatury również zmieniły się o 1/4 przez ostatnie 200lat? Bo taki wniosek sugerujesz.

Przestań proszę przypisywać jakieś mityczne znaczenie ditelnkowi węgla. A jeśli masz na myśli pyły to nie utożsamiaj jednego z drugim.

 

z artykułu:

"zmiany w stanie klimatu do których doszło w 1977" - może mi to ktoś wyjaśnić? bo ja nie znam tej daty. Całkowite zaćmienie słońca? Co za zmiany?

Bo w te antropologiczne czynniki to ja dalej nie wierzę.

Share this post


Link to post
Share on other sites

z artykułu:

"zmiany w stanie klimatu do których doszło w 1977" - może mi to ktoś wyjaśnić?

 

Prawdopodobnie chodzi o maksimum zanieczyszczeń przemysłowych w europie - duże zapylenie -> duże zachmurzenie -> niższe temperatury. Paradoksalnie, zwiększenie wymogów wobec przemysłu spowodowało ocieplenie.

Share this post


Link to post
Share on other sites

IMHO zwykły beton jest groźniejszy niż te całe związki razem wzięte. W obrębie miast jest niesamowite podwyższenie temperatury, co w ich ilości przekłada się na zmiany klimatu. Czynników jest ogrom i szukanie kozła ofiarnego, takiego jak CO2 to parodia, dlatego nie ma co rozwijać kolejnego z rzędu tematu o dwutlenku węgla i jego wpływie na środowisko.

 

Przykład z Historii. Hitlerowi przypisuje się niesamowite ludobójstwo (i słusznie), ale litości nie on jest tylko winien. Nie usprawiedliwiam go, ale gdzie ta reszta. Ludzie lubią jak jest jedna przyczyna bo tak jest po prostu łatwiej.

Share this post


Link to post
Share on other sites

Ludzie lubią jak jest jedna przyczyna bo tak jest po prostu łatwiej.

 

Przegrałeś na mocy prawa Godwina.

Share this post


Link to post
Share on other sites

W ostatnich 200 latach ilość CO2 wzrosła z 280 do 370 ppm.

Nawiasem mówiąc - artykuł sponsorowany przez producentów CO2 :)

 

no i jaki ma to związek z tworzeniem się chmur? zwiększyła się ich ilość przez ten okres? mniej promieni słonecznych pada na ziemię? obniżyła się temperatura na świecie? Jakiekolwiek wnioski?

Share this post


Link to post
Share on other sites

Ale nie odpowiedziałeś na pytanie: jakie mityczne właściwości przypisałem dwutlenkowi węgla?

Czyżbyś nie potrafił obronić wypowiedzianej przez siebie tezy?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      CERN udostępnił swój pierwszy publiczny Raport Środowiskowy, dotyczący m.in. emisji gazów cieplarnianych. Dowiadujemy się z niego, że w 2018 roku ta instytucja wyemitowała 223 800 ton ekwiwalentu dwutlenku węgla. To tyle co duży statek wycieczkowy.
      Z raportu dowiadujemy się, że aż 3/4 tej emisji powodują zawierające fluor gazy, używane podczas prac z wykrywaczami cząstek. CERN planuje zmniejszenie emisji.
      Obejmujący lata 2017–2018 raport sprowokował debatę zarówno wśród pracowników, jak i wśród osób z zewnątrz. Zaczęliśmy zastanawiać się, co można zrobić z tym już teraz i w jaki sposób projektować akceleratory przyszłości, mówi Frederick Bordry, dyrektor CERN ds. akceleratorów i technologii.
      Raport porusza wszelkie kwestie związane z wpływem CERN na środowisko, od emitowanego hałasu, po wpływ na bioróżnorodność, zużycie wody czy emitowane promieniowanie. Specjaliści orzekli, że to redukcja gazów cieplarnianych będzie miała największy wpływ na poprawę stanu środowiska. Inżynierowie już planują uszczelnienie miejsc wycieków w LHC i zoptymalizowanie systemu cyrkulacji gazu. Docelowo chcą, żeby w roli chłodziwa czujników gazy zawierające fluor zostały zastąpione przez dwutlenek węgla, który ma kilka tysięcy razy mniejszy potencjał cieplarniany. Gdy budowaliśmy Wielki Zderzacz Hadronów, nie docenialiśmy potencjału cieplarnianego tych gazów. Naszym głównym zmartwieniem była dziura ozonowa, mówi Bordry. Na razie CERN chce obniżyć swoją bezpośrednią emisję gazów cieplarnianych o 28% do roku 2024.
      Raport uwzględnia też pośrednią emisję generowaną przez CERN. Laboratorium zużywa bowiem tyle energii elektrycznej co niewielkie miasteczko. Zakładamy w LHC systemy odzyskiwania energii. Jesteśmy pionierami wykorzystania nadprzewodnictwa na duża skalę, co może zwiększyć efektywność sieci energetycznych.
      Jak jednak zauważają specjaliści, znacznie lepiej jest emitować gazy cieplarniane w celu dokonywania odkryć naukowych, niż w innych celach. Postęp naukowy jest bardzo ważny i trudno znaleźć ważniejszą instytucję naukową niż CERN. Osobiście wolę, byśmy emitowali gazy cieplarniane pracując w CERN niż lecąc samolotem do Pragi, by się upić na weekend, mówi John Barrett, z Sustainability Research Institute.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Profesor Nishant Malik z Rochester Institute of Technology opracował model matematyczny, który dowodzi, że to zmiany klimatyczne były prawdopodobną przyczyną rozkwitu i upadku cywilizacji doliny Indusu. Ta pierwsza wysoko rozwinięta cywilizacja na terenie subkontynentu indyjskiego, zwana też kulturą Mohendżo Daro lub kulturą harappańską (od Harappy), istniała równocześnie z cywilizacją starożytnego Egiptu i Mezopotamii. Jak twierdzi Malik, zagładę przyniosły jej zmiany wzorca monsunów.
      Malik stworzył nowy model matematyczny służący do pracy z danymi paleklimatycznymi. Informacje na temat klimatu z przeszłości możemy zdobyć badając np. obecność izotopów. Na przykład do odtworzenia ostatnich 5700 lat historii klimatu w regionie, że rozwijała się cywilizacja Mohendżo Daro, naukowcy wykorzystują izotopy obecne w stalagmitach Azji Południowej. Na ich podstawie można bowiem odtworzyć wzorce opadów.
      Malik zauważył, że narzędzia matematyczne używane obecnie do analizowania takich danych są bardzo niedoskonałe. Zwykle otrzymujemy krótkie serie danych, pełne różnego typu zakłóceń i obarczonych sporym marginesem niepewności, mówi uczony. Klimat i pogoda to systemy dynamiczne. Jednak matematyczną teorię systemów dynamicznych trudno jest zastosować do danych paleklimatycznych. Nowa metoda pozwala uzupełnić luki pomiędzy krótkimi seriami dostępnych danych, stwierdza uczony.
      Istnieje kilka różnych teorii dotyczących upadku cywilizacji Doliny Indusu. Mówi się o inwazji, trzęsieniach ziemi, zmianach klimatu. Ta ostatnia przyczyna jest uważana za najbardziej prawdopodobną, jednak to dopiero badania Malika dostarczają pierwszego matematycznego dowodu na jej prawdziwość. Przeprowadzone przez niego analizy wykazały, że do zmian wzorca monsunów doszło bezpośrednio przed pojawieniem się tej cywilizacji, a bezpośrednio przed jej upadkiem wzorzec monsunów ponownie uległ zmianie.
      Opracowana przez Malika metoda łączy w sobie trzy różne sposoby analizy nielinearnych serii danych: układów rekurencyjnych (recurrence plot), eigenmaps Laplace'a oraz informacji Fishera.
      Metodę tę zastosowano do danych paleoklimatycznych z Azji Południowej, obejmujących okres ostatnich 5700 lat. Jednym z najbardziej istotnych wydarzeń, jakie miały miejsce w tym czasie było pojawienie się i upadek cywilizacji doliny Indusu. Rozkwitała ona mniej więcej w latach 3300–1300 przed Chrystusem. Jest ona znana z infrastruktury miejskiej czy opracowania zaawansowanych systemów pomiaru długości i masy. Ostatnie badania wskazują, że mogła ona obejmować 5 milionów osób i rozciągała się od północno-wschodniego Afganistanu po północno-zachodnie Indie. Ewolucję tej cywilizacji można podzielić na trzy fazy: wczesną (3300–2600 p.n.e.), dojrzałą (2600–1900 p.n.e.) oraz późną (1900–1300 p.n.e.). Lata 1300–700 p.n.e. to okres postharappański po całkowitym upadku cywilizacji doliny Indusu. Na załączonej grafice widać, jak zmieniała się liczba osad w poszczególnych okresach i do jak dramatycznego spadku doszło w okresach końcowych.
      Specjaliści wymieniają trzy możliwe przyczyny upadku cywilizacji doliny Indusu. Są to inwazja plemion indo-aryjskich, trzęsienia ziemi oraz zmiana klimatu. Na inwazję nie mamy zbyt wielu dowodów, jednak istnieją dowody na trzęsienia ziemi, które mogły zmienić bieg systemów rzecznych zapewniających istnienie cywilizacji. Ostatnio jednak zaczęło pojawiać się coraz więcej dowodów wskazujących na zmiany klimatyczne jako przyczynę jej upadku.
      Malik i jego zespół podkreślają, że większość osad cywilizacji doliny Indusu było zlokalizowanych w systemie rzecznym Ghaggar-Hakra, który jest zasilany przez monsun. Dlatego też zmiany klimatu od dawna były brane pod uwagę jako przyczyna upadku cywilizacji. Brakowało jednak na to jednoznacznych dowodów.
      Dzięki nowej analizie danych paleoklimatycznych naukowcom udało się wykazać, że około 1500 lat przed naszą erą (± 88 lat) doszło do radykanej zmiany wzorca monsunów. Zmiana ta zbiega się w czasie z upadkiem cywilizacji. Jednak to nie wszystko. Wcześniej, bo około 3259 lat przed Chrystusem (± 88 lat) również zaszła zamiana. Ona z kolei zbiega się z pojawieniem się badanej cywilizacji. Wszystko wskazuje więc na to, że cywilizacja Mohendżo Daro pojawiła się i rozwijała pomiędzy dwiema zmianami wzorca monsunów, które zasilały system Ghaggar-Hakra.
      Co więcej, uczeni zaobserwowali też trzy zestawy danych odpowiadające trzem różnym dynamikom monsunu i różnym etapom ewolucji cywilizacji doliny Indusu. Jako, że opady monsunowe są wrażliwe na albedo Ziemi, naukowcy sądzą, że do pierwszej zmiany monsunów, która umożliwiła powstanie cywilizacji, przyczynił się koniec holoceńskiego optimum klimatycznego. Koniec ocieplania się klimatu spowodował pojawienie się korzystnego wzorca monsunów. Przez kolejnych 2000 lat monsuny były silniejsze i zasilały system rzeczny, nad którym rozwinęła się cywilizacja. Po tym czasie, prawdopodobnie z powodu zmian w zasięgu lodowców, monsuny osłabły, dolina Indusu zaczęła wysychać i nie była w stanie utrzymać dużej cywilizacji rolniczej.
      Badania Malika zostały opisane w artykule pt. Uncovering transitions in paleoclimate time series and the climate driven demise of an ancient civilization.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Cilcular Collider (FCC) informowaliśmy na początku ubiegłego roku.
      The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.
      CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).
      Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.
      Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.
      Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.
      Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.
      Później instalacja ta zostanie rozebrana, a w jej miescu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
      Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.
      Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.
      W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.
      Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.
      W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.
      Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.
      Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.
      Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.
      Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.
      Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.
      Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.
      ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.
      Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.
      Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.
      Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.
      Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Osoby zaprzeczające antropogenicznym przyczynom globalnego ocieplenia często podają przykłady Małej epoki lodowej czy Średniowiecznego optimum klimatycznego, które to mają świadczyć o tym, że podobne zjawiska zachodziły już w przeszłości, zatem człowiek nie ma wpływu na obecne ocieplenie.
      Nature Geoscience ukazały się właśnie dwa artykuły opisujące badania przeprowadzone przez naukowców z Uniwersytetu w Bernie. Wykazały one, że ówczesne zmiany klimatu miały zasięg lokalny. Tymczasem zmiany obecne są odczuwalne na całej planecie.
      ałe epoka lodowa trwała mniej więcej w latach 1300–1850. O jej istnieniu świadczą zarówno doniesienia historyczne, jak i rekonstrukcje temperatury wykonywane np. na podstawie pierścieni wzrostu drzew.
      adacze z Berna przeanalizowali wszystkie dostępne obecnie dane, przeprowadzili rekonstrukcje temperatury dla poszczególnych obszarów globu i stwierdzili, że w ciągu ostatnich 2000 lat żadna z pięciu znanych zmian klimatu – Rzymskie optimum klimatyczne (250 p.n.e – 400 n.e.), Mała epoka lodowa późnej starożytności (VI–VII wiek), Okres chłodny wieków ciemnych (450–950), Średniowieczne optimum klimatyczne (800–1300) i Mała epoka lodowa (1300–1850) – nie była zmianą globalną.
      miany były odczuwalne regionalnie i w różnych okresach. Na przykład podczas Małej epoki lodowej minimum temperaturowe dla środkowych i wschodnich obszarów Pacyfiku nastąpiło w XV wieku, w Europie północno-zachodniej i na południowych wschodzie Ameryki Północnej przypadło ono na wiek XVII, a w pozostałych regionach miało miejsce w połowie XIX wieku. Zachodzące wówczas zmiany można wytłumaczyć na podstawie tego, co wiemy o naturalnej zmienności klimatu. Ponadto w przeszłości zmiany takie nie wykazywały spójności czasowej i przestrzennej, co oznacza, że wywołujące je zjawiska nie były na tyle silne, by wpływać na całą planetę w perspektywie dekad i wieków.
      becnie mamy do czynienia z zupełnie inną sytuacją. Ocieplenie klimatu, z którym mamy do czynienia obecnie, dotyczy ponad całej powierzchni Ziemi, a dla ponad 98% planety wiek XX był najprawdopodobniej najcieplejszym okresem od 2000 lat. Ponadto obecne zmiany wykazują bardzo wysoką koherencję czasoprzestrzenną, następują szybciej niż wcześniejsze znane nam zjawiska tego typu i nie da się ich wytłumaczyć odwołując się do naturalnej zmienności klimatu.
      Twierdzenie o naturalnej zmienności klimatu jest prawdziwe. Jednak jeśli nawet śledząc przeszłe zmiany klimatyczne cofniemy się aż do początków Cesarstwa Rzymskiego, to nie znajdziemy żadnego zjawiska, które w najmniejszym stopniu przypominałoby to, z czym mamy obecnie do czynienia. Dzisiejsze zmiany klimatyczne wyróżniają się niezwykle wysoką synchronizacją w skali całego globu, mówi paleoklimatolog Scott St. George z University of Minnesota.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...