Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Na Wiedeńskim Uniwersytecie Technicznym powstała połączona para atomów-bliźniaków. Dotychczas tego typu pary składały się tylko z fotonów.

Pomiędzy splątanymi fotonami, które naukowcy nauczyli się tworzyć już jakiś czas temu, można teleportować stany kwantowe czy przenosić informacje. W przyszłości, dzięki osiągnięciom austriackich uczonych, podobne manipulacje mogą być przeprowadzane również na atomach.

Naukowcy z Wiednia użyli kondensatu Bosego-Einsteina do utworzenia skorelowanych par atomów. To nie znaczy jeszcze, że manipulując jedną cząstką możemy w tym czasie zmieniać drugą tak, jakby były one powiązane niewidzialnym łączem. Ale mimo to musimy traktować obie cząstki jak pojedynczy system kwantowy, a to otwiera drogę do przeprowadzenia nowych fascynujących eksperymentów - mówi profesor Jörg Schmiedmayer.

Do uzyskania pary atomów konieczne było najpierw stworzenie kondensatu Bosego-Einsteina. Wchodzące w jego skład atomy znajdują się na najniższym możliwym poziomie energetycznym. Kluczem do sukcesu są nasze układy scalone - zdradza Thorsten Schumm. Dzięki ich odpowiedniej architekturze możliwe stało się niezwykle precyzyjne manipulowanie atomami. Układy są tak czułe, że pozwalają na dostarczenie jednego kwantu energii do wybranego atomu w kondensacie. Gdy taki atom powraca do najniższego stanu energetycznego, kondensat musi pozbyć się nadmiarowej energii. Odpowiednia architektura układu scalonego powoduje, że kondensat Bosego-Einsteina może pozbyć się energii tylko w jeden sposób - emitując parę atomów. Inne metody są zabronione przez prawa mechaniki kwantowej - wyjaśnia Rober Bücker.

Zgodnie z prawem zachowania pędu, oba wspomniane atomy poruszają się w przeciwnych kierunkach. To odpowiada procesowi zachodzącemu w specjalnych kryształach, w których tworzy się splątane fotony. Tym razem jednak podobne zjawisko udało się wytworzyć na znacznie bardziej masywnych atomach.

Atomy te są swoimi kwantowymi mechanicznymi kopiami. Tworzą jeden kwantowy obiekt. Żadnego z tych atomów nie można opisać z osobna, muszą być opisywane wspólnie.

Austriaccy naukowcy nie wiedzą jeszcze, w jaki sposób wykorzystają swoje osiągnięcie, nie mają pojęcia, jakie eksperymenty przeprowadzą. Wiedzą jednak, że stworzenie połączonych atomów pozwoli na zaprojektowanie nowych sposobów pomiarów i wykonanie wielu nowych doświadczeń.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kondensat Bosego-Einsteina - upraszczajac - jest zespolem atomow znajdujacych sie w tym samym stanie energetycznym. Niekoniecznie najnizszym, jak podano w artykule. Powszechnie kojarzony ;) jest z najnizszym stanem energetycznym, gdyz ten wlasnie najlatwiej jest osiagnac.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Żadnego z tych atomów nie można opisać z osobna, muszą być opisywane wspólnie.

To niezupełnie tak - zapominając o drugim obiekcie z takiej pary, mamy po prostu zwykły pojedynczy foton/atom, który możemy opisywać jak każdy inny taki obiekt o nieznanym m.in. spinie.

Sęk w splątaniu jest w tym że nie znając kierunku spinu żadnego z tych obiektów, dzięki temu że wykreowane zostały razem, z zachowania momentu pędu dostajemy dodatkową informację: po prostu muszą one mieć przeciwny spin. Czyli poznając spin jednego, natychmiast poznajemy spin drugiego. I tyle.

Fizycznie nie ma możliwości żeby tego użyć do rzeczywistego przesyłania informacji między nimi - z prędkością większą niż światła. Przesłanie informacji następuje tylko wewnątrz teorii reprezentującej naszą wiedzę (mechanice kwantowej).

 

Dużo bardziej niż na splątanie atomów czekam na splątanie innych obiektów ... kropelek na wibrującej powierzchni ;)

Dzięki tworzeniu periodycznie fal dookoła, dostają one też falową naturę - grupa zajmująca się nimi pokazała niedawno dla nich interferencję, tunelowanie, kwantyzację orbit ( http://www.racjonalista.pl/forum.php/s,404014 ) - brakuje właśnie splątania i odpowiednika EPR z łamaniem nierówności Bella ... tylko jak dodać im odpowiednik spinu???

 

ps. Przypadkiem byłem dwa tygodnie temu w gościach w innym instytucie atomowym tego uniwersytetu (Atominstitut) - jest to jedno z niewielu miejsc w którym nie patrzy się ortodoksyjnie na mechanikę kwantową, więc i próbuje zrozumieć konfiguracje pól budujących cząstki ...

 

tracek, powinno być raczej 'jednym z najniższych', bo Twoja definicja też nie oddaje sytuacji :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Austriacy podkreślali w tej informacji, że atomy nie są splątane. Ale jednocześnie bardzo optymistycznie na to patrzą, co sugeruje, że może uda się je splątać. Pożywiom, uwidim jak mawiali starożytni Indianie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pewnie do pełnego splątania chcieliby też np. splątania spinów ich jąder, podczas gdy mają pewnie tylko warunek sumy momentów pędu dla po jednym elektronie z każdego atomu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
      W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
      Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
      Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
      Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
      Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
      Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
      W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
      Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
      Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
      Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
      Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
      Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
      W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
      Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
      Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
      Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
      Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
      Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
      Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
      Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki nowemu sposobowi kontroli rozszerzania się materii w swobodnie opadającym kondensacie Bosego-Einsteina udało się zanotować najniższą z zarejestrowanych temperatur. Naukowcy z Niemiec i Francji obrazowali spadek kondensatu przez ponad 2 sekundy. Zanotowali przy tym temperaturę 38 pikokelwinów (10-12 K). Tak niskiej temperatury nigdy wcześniej nie udało się uzyskać. To znacznie chłodniej niż w przestrzeni kosmicznej, której średnia temperatura wynosi 2,7 K.
      Opracowana przez naukowców metoda umożliwi też lepsze pomiary stałej grawitacji, a być może stanie się alternatywną metodą wykrywania fal grawitacyjnych.
      Kondensat Bosego-Einsteina to występujący w bardzo niskich temperaturach taki stan skupienia materii, w którym tworzące kondensat atomy zachowują się bardziej jak fale, a nie jak cząstki. Fale te nakładają się na siebie, przez co kondensat zachowuje się jak jedna cząstka. Istnienie takiego stanu materii przewidzieli w 1924 roku Satyendra Nath Bose i Albert Einstein. Po raz pierwszy udało się go uzyskać w 1995 roku. Od tamtej pory laboratoria, które są w stanie go wytworzyć, wykorzystują kondensat do badania kwantowej natury materii. Badania takie prowadzi się, na przykład, za pomocą interferometru atomowego, wykorzystującego falową naturę atomów. Badania prowadzi się na swobodnie opadającym kondensacie Bosego-Einsteina, uwolnionym z pułapki magnetycznej. Jednak zaraz po uwolnieniu kondensatu z pułapki do głosu dochodzą siły oddziałujące pomiędzy cząstkami, które szybko zamieniają się w energię kinetyczna cząstek. Kondensat zaczyna się rozszerzać i jego obserwacja staje się niemożliwa.
      Dlatego też kluczową kwestią jest ograniczenie rozszerzania się kondensatu. Obecnie stosowane metody pozwalają na efektywną kontrolę kondensatu wzdłuż jego średnicy, ale nie w osi jego swobodnego spadku.
      W ramach swoich najnowszych badań francusko-niemiecki zespół badawczy zmienił pole magnetyczne w pułapce na oscylujące, zmieniające kształt z kuli w cienką elipsę. Kondensat uwalniany jest w takim momencie, by jego rozszerzanie się wzdłuż osi spadku było jak najmniejsze.
      Podczas eksperymentów zespół Ernsta Rasela z Uniwersytetu Leibniza w Hanowerze wykorzystał 110-metrową wieżę w Bremie. To wyspecjalizowana budowla służąca badaniom nad swobodnym spadkiem i mikrograwitacją. Uczeni rozpoczęli eksperyment od utworzenia kondensatu Bosego-Einsteina złożonego z około 100 000 atomów rubidu. Kondensat był następnie poddawany swobodnemu spadkowi, który trwał 4,74 sekundy. W czasie spadku był obrazowany za pomocą lasera i kamery. Gdy kondensat opadał bez wykorzystania żadnych technik jego kontrolowania, ulegał degradacji już po 160 milisekundach. Jednak, gdy naukowcy wykorzystali swoją technikę kontroli, byli w stanie obrazować kondensat przez ponad 2 sekundy, a osiągnięta w nim temperatura wyniosła rekordowo niskie 38 pK.
      Naukowcy nie powiedzieli jednak ostatniego słowa. Twierdzą bowiem, że dzięki bardziej złożonej architekturze soczewek magnetycznych można będzie lepiej kontrolować kondensat. Pomóc też może zmniejszenie liczby atomów w kondensacie. Ich zdaniem można by dzięki temu osiągnąć temperaturę nawet 14 pK. Problemem może być jednak za mała liczba atomów, przez co kondensat szybko stanie się zbyt rzadki, by można było go obserwować.
      Fizyk Florian Schreck w Amsterdamu pochwalił osiągnięcia kolegów stwierdzając, że to znaczący krok w kierunku badań kondensatu Bosego-Eisteina w warunkach umożliwiających swobodny spadek. Uczony dodał, że bardzo interesujące będzie zastosowanie atomów strontu w miejsce atomów rubidu, gdyż to właśnie stront uważany jest za ten pierwiastek, który pozwoli na wykorzystanie interferometrów atomowych w roli wykrywaczy fal grawitacyjnych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Technologicznego w Delft wykazali, że możliwe jest niezależne manipulowanie dwoma rodzajami magnetyzmu w atomach. Magnetyzm w atomach powstaje w wyniku orbitalnego oraz obrotowego ruchu elektronów. W tym pierwszym przypadku mowa jest o ruchu elektronu wokół jądra. Ruch obrotowy zaś to ruch elektronu wokół własnej osi. Jako, że każdy z tych rodzajów ruchu może odbywać się zgodnie z ruchem wskazówek zegara lub w stronę przeciwną, zatem może reprezentować 0 lub 1. Teoretycznie więc w atomie możemy zapisać 2 bity danych.
      "W praktyce jednak jest to niezwykle trudne, gdyż jeśli zmienimy kierunek ruchu orbitalnego, niemal zawsze zmieni się kierunek ruchu obrotowego i vice versa", mówi główny autor najnowszych badań, Sander Otte.
      Holendrzy, we współpracy z Hiszpanami i Chilijczykami dowiedli, że można odwrócić kierunek ruchu orbitalnego elektronu bez zmiany jego ruchu obrotowego. Osiągnęli to dzięki wykorzystaniu efektu Einsteina-de Haasa. Zgodnie z nim odwrócenie kierunku ruchu orbitalnego można skompensować przez niemierzalnie mały obrót środowiska. W tym przypadku był to kawałek metalu, którego część stanowi atom.
      Naukowcy wykorzystali skaningowy mikroskop tunelowy, którego próbnik może manipulować pojedynczymi atomami. Zwykle atom ma kontakt z wieloma sąsiadującymi atomami, co zaburza jego magnetyzm. Otte i jego zespół odseparowali spin od ruchu orbitalnego atomu żelaza umieszczając go na pojedynczym niemagnetycznym atomie azotu. Dzięki temu mogli manipulować ruchem orbitalnym bez wpływania na spin elektronu.
      Możliwość przechowywania bitów w pojedynczym atomie zwiększyłaby tysiące razy pojemność obecnych układów pamięci. Do tego jeszcze bardzo długa droga. Otte mówi, że w tej chwili głównym osiągnięciem, z którego naukowcy się bardzo cieszą, jest możliwość kontrolowania pojedynczych atomów oraz elektronów krążących wokół nich.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykańskim fizykom udało się uzyskać kondensat Bosego-Einsteina na pokładzie Międzynarodowej Stacji Kosmicznej. Co prawda tamtejsze laboratorium nie osiąga jeszcze tak niskich temperatur, jak instalacje na Ziemi, jednak w przyszłości ISS może stać się idealnym miejscem do testowania kwantowo-mechanicznych grawimetrów i prowadzenia najbardziej precyzyjnych testów zasady równoważności.
      Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę.
      Kondensat uzyskuje się zamykając gaz złożony z atomów bozonowych w pułapce magnetycznej i chłodząc go za pomocą lasera. Powstaje kondensat, który jest uwalniany z pułapki, by mógł zachowywać się w sposób naturalny i badany. Eksperymenty takie są jednak poważnie zakłócane przez grawitację. Powoduje ona, że po uwolnieniu z pułapki atomy błyskawicznie opadają i uderzają o podłoże. Dlatego też naukowcy próbują różnych rozwiązań – polegających na zapewnieniu atomom jak najdłuższego swobodnego spadku – by wydłużyć czas pomiędzy uzyskaniem kondensatu a opadnięciem atomów i kontaktem z podłożem. W tym celu kondensaty zrzuca się z wież czy umieszcza na pokładzie samolotów czy rakiet w locie parabolicznym.
      Najlepszym miejscem do tego typu eksperymentów byłyby więc warunki jak najmniejszej grawitacji. To nie tylko wydłużyłoby czas badania kondensatu, ale pozwoliłoby stopniowo osłabiać pola magnetyczne pułapki, dzięki czemu atomy powoli by się rozprzestrzeniały i chłodziły do jeszcze niższych temperatur.
      Nowe badania zostały przeprowadzone za pomocą Cold Atom Lab (CAL). To laboratorium zostało wyniesione na ISS w 2018 roku i znajduje się na pokładzie amerykańskiego modułu Destiny. Zbudowane kosztem 70 milionów dolarów zdalnie sterowane urządzenie ma objętość zaledwie 0,4 m3, jednak zawiera lasery, magnesy i inne urządzenia potrzebne do uwięzienia, schłodzenia i kontrolowania gazu. Atomy są początkowo przechowywane w centrum komory próżniowej, później transportowane są do "atomowego chipa", na szczycie komory. Układ ten wykorzystuje fale radiowe do odrzucenia cieplejszych atomów, pozostawiając tylko te, których temperatura wynosi mniej niż miliardowa część kelwina.
      Robert Thompson, David Aveline i ich koledzy z Jet Propulsion Laboratory wykorzystali CAL do uzyskania kondensatu Bosego-Einsteina z atomów rubidu-87. Kondensat był obecny przez 1,18 sekundy i zauważono w nim wiele odmiennych charakterystyk od analogicznego kondensatu uzyskiwanego na Ziemi. Najważniejszym spostrzeżeniem było stwierdzenie, że niektóre z atomów rubidu pozostały w oddaleniui odl kondensatu i utworzyły wokół niego halo. Atomy te były utrzymywane za pomocą efektu Zeemana. W warunkach ziemskich opadają one na dno pułapki.
      Mimo, że CAL to niewielkie zdalnie sterowane urządzenie, to uzyskane w nim kondensaty już teraz dorównują tym najlepszym kondensatom uzyskiwanym w ziemskich warunkach. Jak zauważa Bryntle Barrett z francuskiego Institut d’Optique d’Aquitaine, olbrzymią zaletą eksperymentów na orbicie jest fakt, że potencjalnie można tam zapewnić całe lata swobodnego spadku, co pozwoli naukowcom na ciągłe udoskonalanie parametrów eksperymentów. Dlatego też uczony uważa, że uzyskanie kondensatu Bosego-Einsteina na ISS to znaczący krok w kierunku prowadzenia w przestrzeni kosmicznej wysoce precyzyjnych eksperymentów z kwantowymi gazami.
      Specjaliści już mówią o kilku różnych rodzajach takich eksperymentów. Jednak najbardziej obiecującymi z nich będą badania nad atomowymi interferometrami. Takie interferometry pozwoliłyby nie tylko na badanie zjawiska swobodnego spadku, ale posłużyłyby do niezwykle precyzyjnego monitorowania środowiska czy poszukiwania minerałów z przestrzeni kosmicznej.
      Barrett mówi, że już teraz w środowisku naukowym pojawiły się propozycje wystrzelenia dedykowanego satelity, który wykorzystywałby kondensat Bosego-Eisteina do badania zjawiska grawitacji. Taki satelita byłby wolny od wibracji obecnych na Międzynarodowej Stacji Kosmicznej. W tej dekadzie będziemy świadkami realizacji części z tych ekscytujących propozycji, stwierdza uczony.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...