Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'kondensat Bosego-Einsteina'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 8 results

  1. Dzięki nowemu sposobowi kontroli rozszerzania się materii w swobodnie opadającym kondensacie Bosego-Einsteina udało się zanotować najniższą z zarejestrowanych temperatur. Naukowcy z Niemiec i Francji obrazowali spadek kondensatu przez ponad 2 sekundy. Zanotowali przy tym temperaturę 38 pikokelwinów (10-12 K). Tak niskiej temperatury nigdy wcześniej nie udało się uzyskać. To znacznie chłodniej niż w przestrzeni kosmicznej, której średnia temperatura wynosi 2,7 K. Opracowana przez naukowców metoda umożliwi też lepsze pomiary stałej grawitacji, a być może stanie się alternatywną metodą wykrywania fal grawitacyjnych. Kondensat Bosego-Einsteina to występujący w bardzo niskich temperaturach taki stan skupienia materii, w którym tworzące kondensat atomy zachowują się bardziej jak fale, a nie jak cząstki. Fale te nakładają się na siebie, przez co kondensat zachowuje się jak jedna cząstka. Istnienie takiego stanu materii przewidzieli w 1924 roku Satyendra Nath Bose i Albert Einstein. Po raz pierwszy udało się go uzyskać w 1995 roku. Od tamtej pory laboratoria, które są w stanie go wytworzyć, wykorzystują kondensat do badania kwantowej natury materii. Badania takie prowadzi się, na przykład, za pomocą interferometru atomowego, wykorzystującego falową naturę atomów. Badania prowadzi się na swobodnie opadającym kondensacie Bosego-Einsteina, uwolnionym z pułapki magnetycznej. Jednak zaraz po uwolnieniu kondensatu z pułapki do głosu dochodzą siły oddziałujące pomiędzy cząstkami, które szybko zamieniają się w energię kinetyczna cząstek. Kondensat zaczyna się rozszerzać i jego obserwacja staje się niemożliwa. Dlatego też kluczową kwestią jest ograniczenie rozszerzania się kondensatu. Obecnie stosowane metody pozwalają na efektywną kontrolę kondensatu wzdłuż jego średnicy, ale nie w osi jego swobodnego spadku. W ramach swoich najnowszych badań francusko-niemiecki zespół badawczy zmienił pole magnetyczne w pułapce na oscylujące, zmieniające kształt z kuli w cienką elipsę. Kondensat uwalniany jest w takim momencie, by jego rozszerzanie się wzdłuż osi spadku było jak najmniejsze. Podczas eksperymentów zespół Ernsta Rasela z Uniwersytetu Leibniza w Hanowerze wykorzystał 110-metrową wieżę w Bremie. To wyspecjalizowana budowla służąca badaniom nad swobodnym spadkiem i mikrograwitacją. Uczeni rozpoczęli eksperyment od utworzenia kondensatu Bosego-Einsteina złożonego z około 100 000 atomów rubidu. Kondensat był następnie poddawany swobodnemu spadkowi, który trwał 4,74 sekundy. W czasie spadku był obrazowany za pomocą lasera i kamery. Gdy kondensat opadał bez wykorzystania żadnych technik jego kontrolowania, ulegał degradacji już po 160 milisekundach. Jednak, gdy naukowcy wykorzystali swoją technikę kontroli, byli w stanie obrazować kondensat przez ponad 2 sekundy, a osiągnięta w nim temperatura wyniosła rekordowo niskie 38 pK. Naukowcy nie powiedzieli jednak ostatniego słowa. Twierdzą bowiem, że dzięki bardziej złożonej architekturze soczewek magnetycznych można będzie lepiej kontrolować kondensat. Pomóc też może zmniejszenie liczby atomów w kondensacie. Ich zdaniem można by dzięki temu osiągnąć temperaturę nawet 14 pK. Problemem może być jednak za mała liczba atomów, przez co kondensat szybko stanie się zbyt rzadki, by można było go obserwować. Fizyk Florian Schreck w Amsterdamu pochwalił osiągnięcia kolegów stwierdzając, że to znaczący krok w kierunku badań kondensatu Bosego-Eisteina w warunkach umożliwiających swobodny spadek. Uczony dodał, że bardzo interesujące będzie zastosowanie atomów strontu w miejsce atomów rubidu, gdyż to właśnie stront uważany jest za ten pierwiastek, który pozwoli na wykorzystanie interferometrów atomowych w roli wykrywaczy fal grawitacyjnych. « powrót do artykułu
  2. Amerykańskim fizykom udało się uzyskać kondensat Bosego-Einsteina na pokładzie Międzynarodowej Stacji Kosmicznej. Co prawda tamtejsze laboratorium nie osiąga jeszcze tak niskich temperatur, jak instalacje na Ziemi, jednak w przyszłości ISS może stać się idealnym miejscem do testowania kwantowo-mechanicznych grawimetrów i prowadzenia najbardziej precyzyjnych testów zasady równoważności. Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę. Kondensat uzyskuje się zamykając gaz złożony z atomów bozonowych w pułapce magnetycznej i chłodząc go za pomocą lasera. Powstaje kondensat, który jest uwalniany z pułapki, by mógł zachowywać się w sposób naturalny i badany. Eksperymenty takie są jednak poważnie zakłócane przez grawitację. Powoduje ona, że po uwolnieniu z pułapki atomy błyskawicznie opadają i uderzają o podłoże. Dlatego też naukowcy próbują różnych rozwiązań – polegających na zapewnieniu atomom jak najdłuższego swobodnego spadku – by wydłużyć czas pomiędzy uzyskaniem kondensatu a opadnięciem atomów i kontaktem z podłożem. W tym celu kondensaty zrzuca się z wież czy umieszcza na pokładzie samolotów czy rakiet w locie parabolicznym. Najlepszym miejscem do tego typu eksperymentów byłyby więc warunki jak najmniejszej grawitacji. To nie tylko wydłużyłoby czas badania kondensatu, ale pozwoliłoby stopniowo osłabiać pola magnetyczne pułapki, dzięki czemu atomy powoli by się rozprzestrzeniały i chłodziły do jeszcze niższych temperatur. Nowe badania zostały przeprowadzone za pomocą Cold Atom Lab (CAL). To laboratorium zostało wyniesione na ISS w 2018 roku i znajduje się na pokładzie amerykańskiego modułu Destiny. Zbudowane kosztem 70 milionów dolarów zdalnie sterowane urządzenie ma objętość zaledwie 0,4 m3, jednak zawiera lasery, magnesy i inne urządzenia potrzebne do uwięzienia, schłodzenia i kontrolowania gazu. Atomy są początkowo przechowywane w centrum komory próżniowej, później transportowane są do "atomowego chipa", na szczycie komory. Układ ten wykorzystuje fale radiowe do odrzucenia cieplejszych atomów, pozostawiając tylko te, których temperatura wynosi mniej niż miliardowa część kelwina. Robert Thompson, David Aveline i ich koledzy z Jet Propulsion Laboratory wykorzystali CAL do uzyskania kondensatu Bosego-Einsteina z atomów rubidu-87. Kondensat był obecny przez 1,18 sekundy i zauważono w nim wiele odmiennych charakterystyk od analogicznego kondensatu uzyskiwanego na Ziemi. Najważniejszym spostrzeżeniem było stwierdzenie, że niektóre z atomów rubidu pozostały w oddaleniui odl kondensatu i utworzyły wokół niego halo. Atomy te były utrzymywane za pomocą efektu Zeemana. W warunkach ziemskich opadają one na dno pułapki. Mimo, że CAL to niewielkie zdalnie sterowane urządzenie, to uzyskane w nim kondensaty już teraz dorównują tym najlepszym kondensatom uzyskiwanym w ziemskich warunkach. Jak zauważa Bryntle Barrett z francuskiego Institut d’Optique d’Aquitaine, olbrzymią zaletą eksperymentów na orbicie jest fakt, że potencjalnie można tam zapewnić całe lata swobodnego spadku, co pozwoli naukowcom na ciągłe udoskonalanie parametrów eksperymentów. Dlatego też uczony uważa, że uzyskanie kondensatu Bosego-Einsteina na ISS to znaczący krok w kierunku prowadzenia w przestrzeni kosmicznej wysoce precyzyjnych eksperymentów z kwantowymi gazami. Specjaliści już mówią o kilku różnych rodzajach takich eksperymentów. Jednak najbardziej obiecującymi z nich będą badania nad atomowymi interferometrami. Takie interferometry pozwoliłyby nie tylko na badanie zjawiska swobodnego spadku, ale posłużyłyby do niezwykle precyzyjnego monitorowania środowiska czy poszukiwania minerałów z przestrzeni kosmicznej. Barrett mówi, że już teraz w środowisku naukowym pojawiły się propozycje wystrzelenia dedykowanego satelity, który wykorzystywałby kondensat Bosego-Eisteina do badania zjawiska grawitacji. Taki satelita byłby wolny od wibracji obecnych na Międzynarodowej Stacji Kosmicznej. W tej dekadzie będziemy świadkami realizacji części z tych ekscytujących propozycji, stwierdza uczony. « powrót do artykułu
  3. Na Wiedeńskim Uniwersytecie Technicznym powstała połączona para atomów-bliźniaków. Dotychczas tego typu pary składały się tylko z fotonów. Pomiędzy splątanymi fotonami, które naukowcy nauczyli się tworzyć już jakiś czas temu, można teleportować stany kwantowe czy przenosić informacje. W przyszłości, dzięki osiągnięciom austriackich uczonych, podobne manipulacje mogą być przeprowadzane również na atomach. Naukowcy z Wiednia użyli kondensatu Bosego-Einsteina do utworzenia skorelowanych par atomów. To nie znaczy jeszcze, że manipulując jedną cząstką możemy w tym czasie zmieniać drugą tak, jakby były one powiązane niewidzialnym łączem. Ale mimo to musimy traktować obie cząstki jak pojedynczy system kwantowy, a to otwiera drogę do przeprowadzenia nowych fascynujących eksperymentów - mówi profesor Jörg Schmiedmayer. Do uzyskania pary atomów konieczne było najpierw stworzenie kondensatu Bosego-Einsteina. Wchodzące w jego skład atomy znajdują się na najniższym możliwym poziomie energetycznym. Kluczem do sukcesu są nasze układy scalone - zdradza Thorsten Schumm. Dzięki ich odpowiedniej architekturze możliwe stało się niezwykle precyzyjne manipulowanie atomami. Układy są tak czułe, że pozwalają na dostarczenie jednego kwantu energii do wybranego atomu w kondensacie. Gdy taki atom powraca do najniższego stanu energetycznego, kondensat musi pozbyć się nadmiarowej energii. Odpowiednia architektura układu scalonego powoduje, że kondensat Bosego-Einsteina może pozbyć się energii tylko w jeden sposób - emitując parę atomów. Inne metody są zabronione przez prawa mechaniki kwantowej - wyjaśnia Rober Bücker. Zgodnie z prawem zachowania pędu, oba wspomniane atomy poruszają się w przeciwnych kierunkach. To odpowiada procesowi zachodzącemu w specjalnych kryształach, w których tworzy się splątane fotony. Tym razem jednak podobne zjawisko udało się wytworzyć na znacznie bardziej masywnych atomach. Atomy te są swoimi kwantowymi mechanicznymi kopiami. Tworzą jeden kwantowy obiekt. Żadnego z tych atomów nie można opisać z osobna, muszą być opisywane wspólnie. Austriaccy naukowcy nie wiedzą jeszcze, w jaki sposób wykorzystają swoje osiągnięcie, nie mają pojęcia, jakie eksperymenty przeprowadzą. Wiedzą jednak, że stworzenie połączonych atomów pozwoli na zaprojektowanie nowych sposobów pomiarów i wykonanie wielu nowych doświadczeń.
  4. Na Uniwersytecie w Bonn powstał kondensat Bosego-Einsteina stworzony z fotonów. Dotychczas sądzono, że fotony nie nadają się do jego tworzenia. Osiągnięcie niemieckich naukowców pozwoli na pojawienie się nowych źródeł światła, opracowania laserów pracujących z promieniami X czy zbudowania bardziej wydajnych układów scalonych. Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę. Dotychczas kondensatu nie udało się uzyskać z fotonów, gdyż znikają one podczas schładzania. Uczeni z Bonn zastosowali dwa lustra, pomiędzy którymi odbijali promień światła. Między lustrami znajdował się roztwór z pigmentem. Fotony uderzały w molekuły pigmentu i były przezeń wchłaniane, a następnie ponownie uwalnianie. Podczas tego procesu fotony przyjmowały temperaturę płynu. Schłodziły się do temperatury pokojowej i nie były tracone - wyjaśnia profesor Martin Weitz. Następnie za pomocą lasera, którym wzbudzono cząstki pigmentu, zwiększono liczbę fotonów pomiędzy lustrami. To tak bardzo zwiększyło koncentrację schłodzonych fotonów, że zaczęły się one zachowywać jak jeden superfoton. Uzyskano w ten sposób fotonowy kondensat Bosego-Einsteina. Okazał się on nowym źródłem światła o właściwościach podobnych do lasera. Jednak w porównaniu z laserami ma on pewną olbrzymią zaletę. Obecnie nie jesteśmy w stanie zbudować laserów pracujących z bardzo krótkimi falami, np. w zakresie ultrafioletu czy fal X. Powinno być to możliwe dzięki zastosowaniu fotonowego kondensatu Bosego-Einsteina - mówi Jan Klars. Jeśli takie lasery powstaną, z pewnością trafią do fabryk mikroprocesorów, gdzie lasery wykorzystywane są do tworzenia obwodów logicznych. Laser pracujący ze światłem o krótszej długości fali pozwala na większą precyzję, umożliwia tworzenie mniejszych elementów, a co za tym idzie - bardziej wydajnych układów.
  5. Fizycy z Uniwersytetu w Innsbrucku jako pierwsi na świecie sprowokowali i zaobserwowali ciekawy fenomen kwantowy, który pozwala zmusić nieuporządkowane atomy do ustawienia się w zgodnym rządku. Hanns-Christoph Nagerl wraz z zespołem przy pomocy lasera stworzył jednowymiarową siatkę, do której atomy grzecznie „wskakują" przechodząc z nadpłynnego stanu kondensatu Bodego-Einsteina do stanu rozdzielonego. Kondensat Bosego-Einsteina ten to gaz schłodzony do tak niskiej temperatury, że jego atomy zachowują się jak jedna cząsteczka (mówiąc fachowo, jest to efekt kwantowy w którym bozony uzyskują taki sam pęd, czyli obsadzają stan podstawowy). Uzyskanie takiego stanu wymaga schłodzenia gazu do zaledwie miliardowych części stopnia powyżej zera absolutnego. Właśnie taki kwantowy gaz, złożony z atomów cezu, posłużył naukowcom z Instytutu Fizyki Eksperymentalnej do wykonania doświadczenia. Jednowymiarowa, optyczna siatka uzyskana promieniem lasera przełamała silne oddziaływania między atomami, które ustawiły się jeden za drugim, tworząc rodzaj kwantowego drutu. Zewnętrzne pole magnetyczne pozwala precyzyjnie zmieniać sposób interakcji pomiędzy atomami. Czyni to z fenomenu „kwantowego przejścia fazowego w jednowymiarowej siatce optycznej" doskonałe narzędzie do badania stanów kwantowych. Takimi strukturami bardzo interesują się naukowcy. Jak wyjaśnia Hanns-Christoph Nagerl, trudno jest badać zachowanie kwantowych drutów w skondensowanej materii, a schłodzone do ultraniskich temperatur kwantowe gazy to niemal gotowy, elastyczny system laboratoryjny - interakcje pomiędzy atomami w układach o małej liczbie wymiarów są znacznie wyraźniejsze niż w trójwymiarowej przestrzeni. Naukowcy już szykują się na zaawansowane badania podstawowych praw i zachowań materii w stanach kwantowych i podczas kwantowych przejść fazowych. Fakt, że słabe oddziaływanie optycznej siatki pokonuje silne interakcję między atomami może zaskakiwać, ale teoretycznie efekt ten przewidziano już dwa lata temu, właśnie na Uniwersytecie w Innsbrucku. Dokonali tego między innymi fizycy Wilhelm Zwerger i Hans Peter Büchler.
  6. Gdyby przeprowadzić test, co najbardziej zostaje nam w głowach ze szkolnej fizyki, zapewne prym wiodłyby przeczące instynktowi wiadomości o spadaniu. Bo chyba niemal każdy pamięta, że prędkość spadania zależy tylko od grawitacji, nie zależy zaś w ogóle od masy ciała. Dlatego piórko, kamyk i fortepian, zrzucone z tego samego wieżowca, będą spadać z jednakową szybkością - oczywiście jeśli usuniemy zakłócające pomiar powietrze. Niemal tak samo powszechna jest wiedza, że swobodne spadanie nie różni się od swobodnego lewitowania w zerowej grawitacji - oczywiście jeśli pominiemy skutki spadania, czyli bolesne gruchnięcie o ziemię. Każdy zresztą może w ten sposób doświadczyć lewitacji, wystarczy wynająć odpowiedni samolot, który będzie swobodnie spadał przez kilkanaście sekund, takie atrakcje dostępne są komercyjne. Te spostrzeżenia na temat spadania legły u podstaw ogólnej teorii względności Einsteina. Fachowo nazywa się to równoważnością masy grawitacyjnej i masy bezwładnościowej. Jednak zasada równoważności masy nie wynika z żadnego prawa, jest jedynie postulatem. Czy zatem na pewno jest słuszna? Wydawałoby się, że dotychczasowe próby i doświadczenia, jak eksperymenty Eötvösa z wirującymi elementami, dowiodły jego słuszności bez cienia wątpliwości. Dotychczas tak, ale zawsze używano do tego celu stworzonych przez człowieka obiektów makroskopowych. Ale czy zasada równoważności masy obowiązuje również obiekty mniejsze - jak cząstki elementarne? Wiadomo, że fizyka klasyczna rządzi się innymi prawami niż fizyka kwantowa. Do dziś nie udało się ich powiązać, ani objąć żadną nadrzędną teorią, sam Einstein nie potrafił poradzić sobie z tą sprzecznością. Nie wiadomo zatem, jakie efekty dałyby podobne eksperymenty w dziedzinie, gdzie zaczyna rządzić mechanika kwantowa. Ponad wiek po sformułowaniu postulatu równoważności przez Einsteina nadszedł czas na jego zweryfikowanie. Powiedzieć łatwo, wykonać trudno Założenie jest proste: zrzucić w dół szybu obiekty kwantowe. Nieproste jest wykonanie takiego doświadczenia. Dopiero teraz rozwiązanie problemu opisali naukowcy z Uniwersytetu Leibniza w niemieckim Hanowerze. Ernst Rasel zaproponował, aby jako zrzucanego obiektu użyć kondensatu Bosego-Einsteina. Kondensat ten to gaz schłodzony do tak niskiej temperatury, że jego atomy zachowują się jak jedna cząsteczka (fachowo mówiąc, jest to efekt kwantowy w którym bozony uzyskują taki sam pęd, czyli obsadzają stan podstawowy, ale niekoniecznie trzeba to wiedzieć). Normalnie uzyskanie takiego stanu, czyli schłodzenia gazu do zaledwie miliardowych części stopnia powyżej zera absolutnego wymaga skomplikowanej aparatury zajmującej obszerne pomieszczenie: precyzyjnie skalibrowanych laserów, próżniowych komór i zaawansowanej elektroniki. Osiągnięciem hanowerskich badaczy jest upakowane całego urządzenia do kapsuły o średnicy 61 centymetrów i długości 165 centymetrów. Tę można zrzucać z wysokiej na 148 metrów wieży w Bremen, skonstruowanej właśnie do takich eksperymentów. Doświadczenie ze schłodzonym rubidem, powtórzone 180 razy, dowiodło że można obserwować zachowanie kondensatu Bosego-Einsteina z wysoką precyzją. Najbliższy cykl doświadczeń ma na celu porównanie zachowania kondensatów dwóch różnych pierwiastków, rubidu i potasu i stwierdzenie, czy zachowują się identycznie podczas swobodnego spadania. W przyszłości mają być prowadzone obserwacje na orbicie, w warunkach prawdziwej nieważkości. Podczas gdy eksperyment orbitalny może być prowadzony bez przerwy nawet latami, badania swobodnego upadku, z oczywistych powodów, muszą być wielokrotnie powtarzane, żeby uzyskać odpowiednią ilość danych: upadek z wieży w Bremen trwa zaledwie 4 sekundy. Naukowcy chcą zbadać obszar powiązań między mechaniką klasyczną a kwantową, tam, gdzie przebiega między nimi granica. Mają nadzieję na uzyskanie nowego, interesującego spojrzenia na różnice między procesami fizyki klasycznej i kwantowej, a być może nawet na znalezienie klucza do jednej, ujmującej je obie, teorii.
  7. Naukowcy z MIT-u odpowiedzieli na pytanie, które od dziesięcioleci trapiło uczonych - czy w gazach powstaje zjawisko magnetyzmu. Odpowiedź brzmi: tak. Zespół z Massachusetts Institute of Technolgy zaobserwował magnetyzm w gazie atomów litu schłodzonych do temperatury -273 stopni Celsjusza. W ten sposób udowodniono, że gaz złożony z fermionów nie musi tworzyć sieci krystalicznej, by być ferromagnetykiem. Uczeni od dziesięcioleci zastanawiali się, czy gazy i płyny mogą być ferromagnetykami, czyli materiałami wykazującymi silne właściwości magnetyczne nawet bez obecności pola magnetycznego. W ciałach stałych, takich jak żelazo czy nikiel, mamy do czynienia z ferromagnetyzmem wówczas, gdy nietworzące par elektrony w siatce krystalicznej spontanicznie ustawiają się w tym samym kierunku. Wszystkie fermiony (elektrony, protony i neutrony) wykazują właściwości podobne do elektronów, a więc mogą zostać użyte do symulowania ich zachowania w elektromagnesie. Atomy i molekuły, które posiadają równe liczby fermionów uznawane są za złożone fermiony. Dlatego też uczeni z MIT-u użyli litu-6, którego atomy składają się z trzech elektronów, trzech protonów i trzech neutronów. Wiadomo, że w naturze istnieją naturalne płyny i gazy fermionowe. Występują on w ciekłym helu-3 i w gwiazdach neutronowych. Jednak, jak wyjaśnia Gyu-boong Jo, członek zespołu badawczego, naturalne gazowa i ciekłe systemy fermionów nie wykazują właściwości ferromagnetycznych, gdyż poszczególne elementy zbyt słabo ze sobą oddziałują. Jednak w przypadku atomów litu-6 możliwe jest manipulowanie siłą oddziaływań dzięki zmianom zewnętrznego pola magnetycznego. Uczeni z MIT-u najpierw złapali chmurę chłodnych atomów litu w pułapkę stworzoną za pomocą lasera na podczerwień. Następnie zwiększali stopniowo siły oddziałujące pomiędzy atomami. Początkowo chmura zaczęła się powiększać, a później gwałtownie się skurczyła. gdy atomy uwolniono z pułapki, doszło do bardzo szybkiego powiększania się chmury. Takie zachowanie jest zgodne z teoretycznymi przewidywaniami dotyczącymi zjawisk zachodzących podczas przechodzenia do stanu ferromagnetyka. Specjaliści zgadzają się, że uzyskano w ten sposób bardzo silny dowód na to, iż gazy fermionowe mogą mieć takie właściwości jak krystaliczne ferromagnetyki. Jednak ostatecznym dowodem byłoby bezpośrednie zaobserwowanie ferromagnetyzmu. MIT ma zamiar nadal prowadzić badania nad nowymi właściwościami gazów, które są kontynuacją badań nad kondensatami Bosego-Einsteina. Bardzo szybko mogą one przyczynić się do powstania nowych materiałów magnetycznych, użytecznych podczas przechowywania danych, w nanotechnologii i diagnostyce medycznej. Ponadto umożliwią one dokładniejsze zbadania związków magnetyzmu i nadprzewodnictwa.
  8. Choć NIST (National Institute of Standards and Technology) oraz Joint Quantum Institute z University of Maryland to organizacje znane i poważane w świecie nauki, nie przeszkodziło im to w zbudowaniu... perpetuum mobile. Jednak zamiast dziwacznej maszyny, zaprezentowano aparaturę, której centralnym elementem jest tzw. kondensat Bosego-Einsteina. Ta niezwykła substancja, uważana z piąty (po plazmie) stan skupienia materii, zawiera atomy schłodzone do tego stopnia, że znajdują się one na najniższym poziomie energetycznym. Efekt jest taki, że tracą one swoje normalne właściwości i tworzą jeden "makroskopowy" atom, w którym można bezpośrednio zaobserwować efekty kwantowe. Jedną z charakterystycznych cech kondensatu jest nadpłynność – hydrauliczny odpowiednik nadprzewodnictwa – którą wykorzystano w opisywanym eksperymencie. Badacze do demonstracji wybrali atomy sodu schłodzone laserami (a właściwie unieruchomione) w odpowiednio przygotowanej pułapce o kształcie torusa. Po wprawieniu w ruch obrotowy, atomy utrzymywały swą prędkość bez pobierania energii z zewnątrz i bez jej utraty (np. poprzez tarcie). Co prawda stan taki udało się zachować najwyżej przez 10 sekund, jednak eksperyment dowiódł możliwości utrzymania kondensatu w "nieskończonym" ruchu. Jak informują naukowcy, obecnie trwają prace nad wydłużeniem czasu, w którym można obserwować wspomniane zjawisko. Jednak w przyszłości, po opanowaniu odpowiednich technologii, możliwe będzie wykorzystanie kondensatu w sprzęcie codziennego użytku, np. jako urządzenia do bezstratnego przechowywania energii, czy niezwykle dokładne czujniki dla systemów nawigacyjnych.
×
×
  • Create New...