Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Precyzyjne pomiary neutronowej „skórki” jądra atomu zmieniają wiedzę o gwiazdach neutronowych

Recommended Posts

Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.

Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.

Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.

W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.

Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.

Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.

Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.

Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.

Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.

Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.

Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Posted (edited)
Cytat

Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. 

Wszędzie tu piszą o sferze. A sfera to nie to samo co kula.
To by była ciekawostka gdyby jądro wyglądało jak sfera protonowa otoczona sferą neutronową.
Tylko czy rzeczywiście to jest model prawidłowy. Czy nie raczej jest to kula protonowa-neutronowa otoczona sferą nadmiarowych neutronów?
Bo w jądrze też mamy poziomy energetyczne a w sferze to tak jakby jest tylko jeden poziom.

Edited by thikim

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dzięki badaniom przeprowadzonym w ISIS, brytyjskim źródle neutronów i mionów, naukowcy mogli określić stan... gospodarki Imperium Rzymskiego za rządów trzech cesarzy. Niedestrukcyjnym badaniom poddano trzy monety, wybite za czasów Tyberiusza (cesarz w latach 14–37), Hadriana (117–138) i Juliana II (361–363). Gdy bowiem w grę wchodzą cenne zabytki, naukowcy prowadzą badania metodami niedestrukcyjnymi. Oznacza to np. że z zabytku nie można pobrać próbek. A to z kolei znacznie ogranicza możliwości badawcze. Na szczęście obecnie w sukurs przychodzą takie narzędzia jak ISIS.
      Naukowcy z University of Oxford i University of Warwick postanowili sprawdzić skład wspomnianych monet. Sprawdzenie, czy ich powierzchnia nie została sztucznie wzbogacona lub czy do metali bardziej szlachetnych nie dodano zbyt dużo tańszych metali może wiele powiedzieć o społeczeństwie i stanie gospodarki z czasów, gdy monety wybito.
      Już wcześniej było wiadomo, że powierzchnia monet to w dużej mierze czyste złoto. Jednak badania takie ograniczały się do ułamków milimetra grubości monety. Istniało więc uzasadnione podejrzenie „a co, jeśli?”. Wiemy, że Rzymianie celowo wzbogacali powierzchnię swoich srebrnych monet, by ukryć fakt, że wewnątrz są one pełne miedzi. Mieliśmy więc pełne podstawy, by uważać, że coś podobnego mogli robić ze złotymi monetami. Dzięki ISIS mogliśmy dotrzeć do samego środka monet w sposób całkowicie niedestrukcyjny. Przekonaliśmy się, że wysoki odsetek czystego złota, z jakim mamy do czynienia na powierzchni monet, pozostaje stały na całej grubości monety, mówi główny autor badań, doktor George Green z University of Oxford.
      Z jednej strony to potwierdzenie dobrego stanu rzymskiej gospodarki z czasów wybicia monet. Z drugiej zaś, jak zapewnia Green, upewnienie się, że w przypadku rzymskich złotych monet, to, co widać na powierzchni, znajduje się też we wnętrzu.
      Spektroskopia z użyciem mionów ma i tę zaletę, że nie wymaga wcześniejszego oczyszczenia badanego obiektu, co pozwala na zmniejszenie kosztów, zaoszczędzenie czasu oraz – często – uchronienie zabytku, który może prowadzić do jego uszkodzenia. Dlatego też technika taka jest szczególnie użyteczna przy badaniu np. obiektów wydobytych z wraków.
      Metoda ta polega na wystrzeleniu strumienia mionów w kierunku badanego obiektu. Są one przechwytywane przez atomy w monetach, w wyniku czego dochodzi do emisji promieniowania unikatowego dla pierwiastków, z których ono pochodzi.
      Uzyskane wyniki pokazują, jak wielki potencjał drzemie w tej metodzie badawczej. To technika niedestrukcyjna, która pozwala na zajrzenie pod powierzchnię zabytków. Nie wymaga ona specjalnego przygotowania próbki i nie powoduje, że badany obiekt staje się radioaktywny. Jest zatem idealnym narzędziem do badań zabytków. Pozwala ona nie tylko sprawdzić skład monet pod ich powierzchnią, ale określić m.in. głębokość korozji, zidentyfikować unikatowe zmiany składu chemicznego związane z konkretnym procesem produkcyjnym, czy też przekonać się, czy nie mamy do czynienia z fałszywką, dodaje doktor Adrian Hillier, odpowiedzialny w ISIS za badania z użyciem mionów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni z MIT, LIGO oraz University of New Hampshire obliczyli ilość ciężkich pierwiastków jaka powstaje podczas łączenia się czarnych dziur z gwiazdami neutronowymi i porównali swoje dane z ilością ciężkich pierwiastków powstających podczas łączenia się gwiazd neutronowych. Hsin-Yu Chen, Salvatore Vitale i Francois Foucart wykorzystali przy tym zaawansowane systemy do symulacji oraz dane z obserwatoriów fal grawitacyjnych LIGO-Virgo.
      Obecnie astrofizycy nie do końca rozumieją, w jaki sposób we wszechświecie powstają pierwiastki cięższe niż żelazo. Uważa się, że do ich tworzenia dochodzi w dwojaki sposób. Około połowy takich pierwiastków powstaje w czasie procesu s zachodzącego w gwiazdach o niewielkiej masie (0,5–10 mas Słońca) w końcowym etapie ich życia, gdy gwiazdy te znajdują się w fazie AGB. Są wówczas czerwonymi olbrzymami. Dochodzi tam do nukleosyntezy, kiedy to w warunkach niskiej gęstości neutronów i średnich temperaturach nuklidy wyłapują szybkie neutrony.
      Z kolei mniej więcej druga połowa ciężkich pierwiastków powstaje w szybkim procesie r, podczas wybuchu supernowych i kilonowych. Dochodzi wówczas do szybkiego wychwyceniu wielu neutronów, a następnie serii rozpadów, które prowadzą do powstania stabilnego pierwiastka. Do pojawienia się tego procesu potrzebne są wysokie temperatury i bardzo gęste strumienie neutronów. Naukowcy spierają się jednak co do tego, gdzie zachodzi proces r.
      W 2017 roku LIGO-Virgo zarejestrowały połączenie gwiazd neutronowych, które doprowadziło do olbrzymiej eksplozji zwanej kilonową. Potwierdzono wówczas, że w procesie tym powstały ciężkie pierwiastki. Istnieje jednak możliwość, że proces r ma też miejsce zaraz po połączeniu się gwiazdy neutronowej z czarną dziurą.
      Naukowcy spekulują, że gdy gwiazda neutronowa jest rozrywana przez pole grawitacyjne czarnej dziury, w przestrzeń kosmiczną zostaje wyrzucona olbrzymia ilość materiału bogatego w neutrony. Powstaje wówczas idealne środowisko do pojawienia się procesu r. Specjaliści zastrzegają jednak, że w procesie tym musi brać udział czarna dziura do dość niewielkiej masie, która dość szybko się obraca. Zbyt masywna czarna dziura bardzo szybko wchłonie materiał z gwiazdy neutronowej i niewiele trafi w przestrzeń kosmiczną.
      Chen, Vitale i Foucart jako pierwsi porównali ilość ciężkich pierwiastków, jakie powstają w wyniku obu typów procesu r. Przetestowali przy tym liczne modele, zgodnie z którymi proces r mógłby zachodzić.
      Większość symulacji wykazała, że w ciągu ostatnich 2,5 miliarda lat w wyniku łączenia się gwiazd neutronowych przestrzeń kosmiczna została wzbogacona od 2 do 100 razy większą ilością ciężkich pierwiastków niż w wyniku kolizji czarnych dziur z gwiazdami neutronowymi. W modelach, w których czarna dziura obracała się powoli, połączenia gwiazd neutronowych dostarczały 2-krotnie więcej ciężkich pierwiastków, niż połączenia czarnej dziury z gwiazdą neutronową. Z kolei tam, gdzie czarna dziura obraca się powoli i ma niską masę – poniżej 5 mas Słońca – połączenia gwiazd neutronowych odpowiadają aż za 100-krotnie więcej ciężkich pierwiastków powstających w procesie r. Do tego, by połączenia czarnych dziur z gwiazdami neutronowymi odpowiadały za znaczną część pierwiastków powstających w procesie r konieczne jest istnienie czarnej dziury o małej masie i szybkim obrocie. Jednak dane, którymi obecnie dysponujemy, raczej wykluczają istnienia takich czarnych dziur.
      Autorzy badań już planują poprawienie swoich obliczeń dzięki danym z udoskonalanych LIGO i Virgo oraz z nowego japońskiego wykrywacza KAGRA. Wszystkie trzy urządzenia powinny ponownie ruszyć w przyszłym roku. Dokładniejsze obliczenia tempa wytwarzania ciężkich pierwiastków we wszechświecie przydadzą się m.in. do lepszego określenia wieku odległych galaktyk.
      Ze szczegółami badań można zapoznać się na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Możliwość uwięzienia cząstek i schłodzenia ich do temperatur bliskich zeru absolutnemu jest niezbędna do przeprowadzenia wielu badań fizycznych, w tym do badania problemu asymetrii pomiędzy materią a antymaterią. Naukowcy pracujący przy eksperymencie BASE (Baryon Antibaryon Symmetry Experiment) w CERN-ie poinformowali o pierwszym udanym schłodzeniu pojedynczego protonu za pomocą techniki chłodzenia sympatycznego.
      Wszechświat powinien składać się z równej ilości materii i antymaterii. Jednak tak nie jest. Jednym z obiecujących sposobów na rozwiązanie tej zagadki jest badanie momentów magnetycznych protonu i antyprotonu. Tym właśnie zajmują się uczeni z BASE.
      Specjaliści wykorzystują w tym celu bardzo zaawansowane urządzenie zwane pułapką Penninga. Jest ona w stanie przechwycić i utrzymać pojedynczą cząstkę, którą dzięki temu można badać. Dotychczas zespołowi BASE udało się zwiększyć precyzję pomiarów momentu magnetycznego protonu 30-krotnie, a w przypadku antyprotonu udoskonalono pomiar aż o trzy rzędy wielkości. Dzięki temu można testować symetrię materii i antymaterii z dokładnością do 1,5 części na miliard. Tym samym wykazali, że wartość momentów magnetycznych protonu i antyprotonu jest taka sama w przedziale dziewięciu cyfr znaczących.
      Problem z tak precyzyjnymi pomiarami polega na tym, że aby ich dokonać, musimy utrzymać cząstki w temperaturze bliskiej zeru absolutnemu (-273,15 stopnia Celsjusza). Podczas swoich ostatnich prac uczeni z BASE wykorzystali schłodzoną laserem chmurę jonów berylu do schłodzenia protonu. Laserowego chłodzenia nie można użyć bezpośrednio na cząstkach subatomowych. Można natomiast, jak się okazuje, użyć chłodzenia sympatycznego do obniżenia temperatury protonów za pomocą schłodzonych jonów berylu.
      Specjaliści z BASE pod kierunkiem Stefana Ulmera z japońskiego RIKEN przeprowadzili swój eksperyment w laboratorium Uniwersytetu w Moguncji. Wykorzystali w tym celu dwie pułapki jonowe Penninga, oddalone od siebie o 9 centymetrów. Pułapki były połączone za pomocą kriogenicznego obwodu rezonansowego (LC). W jednej znajdował się pojedynczy proton, a w drugiej chmura jonów berylu schłodzonych za pomocą lasera. Częstotliwość pracy obwodu LC zostaładobrana tak, by możliwy był transfer energii od protonu do jonów.
      Uczeni dowiedli, że są w stanie obniżyć temperaturę protonu o 85%, do poziomu 17 kelwinów, a następnie obniżyli ją do 2,5 kelwina. Twierdzą, że w przyszłości, odpowiednio dobierając parametry swojego eksperymentu, w tym geometrię pułapek, będą w stanie w ciągu sekund obniżyć temperaturę protonu do dziesiątków milikelwinów. Dotychczas chłodzenie antyprotonów do 100 mK trwało około 10 godzin.
      Dzięki uzyskaniu jeszcze niższych temperatur możliwe będą bardziej precyzyjne pomiary symetrii pomiędzy materią a antymaterią. Nie wiadomo jednak, jak bardzo precyzyjne byłyby to pomiary.
      Już pojawiły się głosy, że technika ta może być przydatna do chłodzenia na dowolną odległość każdej cząstki posiadającej ładunek elektryczny, a być może nawet do wymiany bitów kwantowych informacji w sposób bardziej efektywny niż za pomocą światła.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Konsorcja naukowe Virgo, LIGO i KAGRA ogłosiły pierwsze w historii odkrycie układów podwójnych składających się z czarnej dziury i gwiazdy neutronowej. Było to możliwe dzięki wykryciu w styczniu 2020 r.  sygnałów fal grawitacyjnych wyemitowanych przez dwa układy (nazwane od daty ich rejestracji GW200105 i GW200115) w których wirujące wokół siebie czarna dziura i gwiazda neutronowa połączyły się w jeden zwarty obiekt. Astronomowie już kilkadziesiąt lat temu przewidzieli istnienie takich układów, ale do tej pory nigdy nie zaobserwowano ich z całkowitą pewnością, ani za pomocą sygnałów elektromagnetycznych, ani obserwując fale grawitacyjne. Wyniki nowych obserwacji i ich astrofizyczne implikacje zostały opublikowane w The Astrophysical Journal Letters.
      Od momentu pierwszej spektakularnej detekcji fal grawitacyjnych z koalescencji dwóch czarnych dziur, GW150914, za którą została przyznana nagroda Nobla w 2017, zarejestrowaliśmy sygnały z 50 układów podwójnych obiektów zwartych, ale były to wyłącznie pary łączących się czarnych dziur lub gwiazd neutronowych. Długo wyczekiwane odkrycie układów podwójnych gwiazdy neutronowej z czarną dziurą rzuca światło na narodziny, życie i śmierć gwiazd, jak również na otoczenie, w którym powstały – wyjaśnia prof. Dorota Rosińska
      Te obserwacje pokazują, ze istnieją mieszane układy podwójne zawierające gwiazdy neutronowe i czarne dziury. Istnienie takich układów było przewidziane w wielu scenariuszach, w tym rozwijanych przez mnie wraz z prof. Belczynskim od ponad dwudziestu lat. Ta detekcja jest potwierdzeniem takich przewidywań – mówi prof. Tomasz Bulik
      Sygnały fal grawitacyjnych zarejestrowane w styczniu 2020 r. zawierają cenne informacje o cechach fizycznych zaobserwowanych układów, takich jak ich odległości i masy składników, a także o mechanizmach fizycznych, które takie pary wygenerowały i doprowadziły do ich połączenia. Analiza danych wykazała, że czarna dziura i gwiazda neutronowa, które stworzyły GW200105, są odpowiednio około 8,9 i 1,9 razy masywniejsze od naszego Słońca, a ich połączenie miało miejsce około 900 milionów lat temu. W przypadku zdarzenia GW200115 naukowcy z konsorcjów Virgo i LIGO szacują, że dwa zwarte obiekty miały masy około 5,7 (czarna dziura) i 1,5 (gwiazda neutronowa) mas Słońca i połączyły się niemal miliard lat temu.
      Prof. Rosińska: Spodziewaliśmy się, że podczas koalescencji gwiazdy neutronowej z czarną dziurą, gwiazda zostanie rozerwana przez siły pływowe, gdy znajdzie się dostatecznie blisko czarnej dziury, jednak duża różnica mas obiektów spowodowała, że prawdopodobnie gwiazda neutronowa została połknięta w całości przez czarną dziurę.
      Ogłoszony wynik, wraz z dziesiątkami innych detekcji dokonanych do tej pory przez detektory Virgo i LIGO, pozwala po raz pierwszy na dokładną obserwację jednych z najbardziej gwałtownych i rzadkich zjawisk we Wszechświecie. Badamy proces ich tworzenia oraz miejsce ich narodzin.  Obserwacje koalescencji czarnej dziury i gwiazdy neutronowej, dają możliwość testowania fundamentalnych praw fizyki w ekstremalnych warunkach, których nigdy nie będziemy w stanie odtworzyć na Ziemi. Prof. Rosińska: Mamy nadzieję, że przyszłym obserwacjom łączenia się gwiazdy neutronowej z czarną dziurą może towarzyszyć wykrycie wytworzonego w tym procesie promieniowania elektromagnetycznego, co da nam wgląd w proces rozrywania pływowego gwiazdy neutronowej przez czarną dziurę. Może to dostarczyć informacji o ekstremalnie gęstej materii, z której składają się gwiazdy neutronowe.
      Obserwacja dwóch układów gwiazda neutronowa-czarna dziura pokazuje, że koalescencji tego typu obiektów może być od 5 do 15 rocznie w objętości o promieniu miliarda lat świetlnych. To szacowane tempo łączenia się NSBH można wytłumaczyć zarówno izolowaną ewolucją układów podwójnych jak i dynamicznymi oddziaływaniami w gęstych gromadach gwiazd, ale dostępne do tej pory dane nie pozwalają nam na wskazanie bardziej prawdopodobnego scenariusza.
      W pracach uczestniczyli naukowcy z Obserwatorium Astronomicznego UW: prof. Tomasz Bulik, prof. Dorota Rosińska, mgr Małgorzata Curyło, mgr Neha Singh, dr Przemysław Figura, dr Bartosz Idźkowski, mgr Paweł Szewczyk.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...