Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'grzyb' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 16 wyników

  1. Grzyby generują sygnały elektryczne, których wzorce podobne do wzorców ludzkiej mowy, informuje Andrew Adamatzky z Unconventional Computing Laboratory na University of the West of England. Sygnały takie rozprzestrzeniają się za pośrednictwem grzybni, docierając do różnych części kolonii połączonej za jej pomocą. Zarejestrowaliśmy pozakomórkową aktywność elektryczną u czterech gatunków grzybów. Znaleźliśmy dowody wskazujące, że sygnały te rozpowszechniają się poprzez grzybnię. Wysunęliśmy hipotezę, że ta aktywność elektryczna to przejaw komunikacji w ramach kolonii. [...] Postanowiliśmy więc uchwycić główne zjawiska tego grzybiego „języka”. Odkryliśmy, że długość sygnałów elektrycznych mierzonych liczbą krótkich impulsów odpowiada rozkładowi długości słów w ludzkim języku. Z naszych badań wynika, że objętość grzybiego „słownika” może sięgać do 50 słów, a zasadnicza jego część to 15–20 najczęściej używanych słów. Gatunki Schizophyllum commune [Rozszczepka pospolita – red.] i Omphalotus nidiformis mają większy leksykon, a Cordyceps militaris [Maczużnik bojowy – red.] i Flammulina velutipes [Płomiennica zimowa – red.] posługują się mniejszym zasobem „słów”. Średnia długość „słów” wahała się od 3,3 (O. nidiformis) do 8,9 (C. militaris) impulsów. Z kolei dla wszystkich gatunków razem średnia długość słów wynosiła 5,97 impulsów, czyli jest taka sama, jak w niektórych ludzkich językach (np. w angielskim wynosi ona 4,8, a w rosyjskim 6) – czytamy na łamach Royal Society Open Science. Nie wiemy czy istnieje bezpośredni związek pomiędzy wzorcami obserwowanymi w komunikacji pomiędzy grzybami i pomiędzy ludźmi. Prawdopodobnie takiego związku nie ma. Jednak z drugiej strony wiemy, że istnieje wiele podobieństw w sposobie przetwarzania informacji przez różne klasy, rodziny i gatunku organizmów żywych. Interesowało mnie wykonanie porównania, mówi Adamatzky. Mimo wielu podobieństw, nie mamy żadnych danych by odgadnąć, o czym grzyby ze sobą „rozmawiają”. Możemy tylko przypuszczać, że wymieniają się informacjami na temat zagrożeń czy dostępnych zasobów. Co więcej, nie możemy nawet ze stuprocentową pewnością stwierdzić, że przez grzybnię biegną jakieś komunikaty. Ta kwestia wymaga dalszych badań. « powrót do artykułu
  2. Chroniąc uprawy przed szkodnikami, stosujemy pestycydy. Te jednak szkodzą na dłuższą metę zarówno nam samym, jak i środowisku. Akumulują się w wodzie, glebie oraz tkankach żywych organizmów. Dlatego rolnictwo ekologiczne coraz częściej korzysta z pomocy bakterii i grzybów, a ostatnio nawet skorpionów. Raymond St. Leger, profesor entomologii z University of Maryland, wyhodował superzabójczy gatunek grzyba. Do genomu Metarhizium anisopliae wprowadził geny kodujące neurotoksynę AaIT. To składnik jadu jednego z najgroźniejszych dla ludzi gatunków skorpiona. Androctonus australis zamieszkuje Saharę (Nature Biotechnology). Oprócz genu kodującego toksynę, do DNA grzyba wprowadzono też gen kontrolny. Powoduje on, że trucizna jest wytwarzana wyłącznie w krwi insekta. Skorpiony dysponują toksynami doskonale dostosowanymi do zabijania owadów. Drapieżnik ten uśmierca, nakłuwając wcześniej ofiarę. Musieliśmy więc znaleźć sposób na wprowadzenie trucizny do organizmu bez skorpiona. Ze względu na naturalną zakaźność, grzyby są do tego celu idealne. Lądują na powłokach ciała owada i wbijają w nie strzępki (hyphae), dzięki czemu wrastają w tkanki. Gdyby zmusić grzyby do wprowadzania do organizmu ofiary toksyny, można by ją szybko zabić. Właśnie to się nam udało – wyjaśnia profesor St. Leger. Metarhizium anisopliae i gatunki pokrewne są już wykorzystywane, m.in. w Australii i Afryce, do zwalczania szkodników upraw (np. szarańczy) i komarów. Przed skojarzeniem z toksyną skorpiona były jednak mniej skuteczne od syntetycznych pestycydów. Problem polegał na tym, że potrzeba sporo zarodników grzyba, by zabić owada. Poza tym trwa to dosyć długo. Ludzie są co prawda rzadziej gryzieni, ale nie zmniejsza to liczby zachorowań na malarię czy gorączkę tropikalną. Należało więc wyhodować superzabójczego grzyba, który uśmierca błyskawicznie. Testy laboratoryjne wykazały, że w porównaniu do niezmodyfikowanej wersji, M. anisopliae uzyskany dzięki inżynierii genetycznej jest 9-krotnie skuteczniejszy w uśmiercaniu komarów, 22-krotnie w tępieniu gąsienic i 30-krotnie w eliminowaniu najgroźniejszego szkodnika kawy Hypothenemus hampei.
  3. Na całym świecie mamy do czynienia ze spadającą populacją żab, dziesiątkowanych przez grzybice. Udowodniono, że do wymierania żab prowadzi utrata bioróżnorodności. Zmniejszając się populacja tych płazów świadczy także o postępującej degradacji środowiska naturalnego. Żaby są bowiem bardzo wrażliwe na zmiany, stanowią więc papierek lakmusowy zmian środowiskowych. Naukowcy, chcą uchronić żaby przed zagładą, hodują niektóre gatunki w niewoli, mając nadzieję, że gdy epidemia wygaśnie będzie można wypuścić je na wolność. Niestety Vance Vredenburg z San Francisco State University informuje, że wypuszczone żaby mogą nadal być narażone na działanie śmiercionośnego grzyba. Uczony zauważył, że w latach 2003-2010 populacja dwóch gatunków zamieszkujących Sierra Nevada znacznie się zmniejszyła, podczas gdy populacja trzeciego - Pseudacris regilla - utrzymuje się na niezmienionym poziomie. Nie dzieje się tak dlatego, że Pseudacris regilla w jakiś sposób się nie zaraziły. Aż dwie trzecie przedstawicieli tego gatunku jest zarażonych grzybem. Jednak są nań odporne. A to oznacza, że jeśli nawet epidemia u pozostałych gatunków wygaśnie, to mogą się one ponownie zarazić od Pseudacris regilla. Matthew Fisher z Imperial College London uważa, że jedynym wyjściem jest hodowanie w niewoli żab zarażonych i niezarażonych. Istnieją bowiem dowody, że niektóre osobniki wykształcają oporność na grzyba. Selekcjonując je i krzyżując dalej z przedstawicielami własnego gatunku można by doprowadzić do sytuacji, w której cały gatunek zyska oporność. Taka metoda, chociaż obiecująca, będzie jednak bardzo kosztowna, zauważył Fisher.
  4. Wg naukowców, mikoryza to kluczowy wynalazek w ewolucji roślin lądowych. Szacuje się, że pojawiła się ok. 400 mln lat temu. Niedawno w bursztynie indyjskim wielkości orzecha włoskiego odkryto pierwszy przypadek ektomikoryzy grzyba i rośliny okrytonasiennej sprzed 52 mln lat. Skamielinę znalazł zespół specjalistów z USA (Amerykańskiego Muzeum Historii Naturalnej), Niemiec (Uniwersytetu w Getyndze) oraz Indii (Uniwersytetu w Lucknow). Mikoryza to bardzo korzystne zjawisko, które umożliwiło przeżycie większości roślin lądowych. Komórki grzybów glebowych zwiększają powierzchnię korzeni, dzięki czemu roślina ma dostęp do większej ilości składników odżywczych. W zamian grzyb dostaje od rośliny cukry. Wiadomo też, że mikoryzująca roślina jest bardziej oporna na wpływ suszy i działania patogenów. Istnieją 2 podstawowe rodzaje mikoryzy: 1) wewnętrzna (endomikoryza), z którą mamy do czynienia w 80% przypadków i 2) zewnętrzna (ektomikoryza), odpowiadająca za zaledwie 10% przypadków. Inkluzje opisane w periodyku New Phytologist obrazują rozmaite stadia rozwoju i dokumentują wiele szczegółów morfologicznych. Mikoryza jest czymś niezwykle rzadkim w zapisie kopalnym; dotąd znaleziono jeszcze tylko jedną skamieniałość mikoryzy - wyjaśnia Alexander Schmidt z Uniwersytetu w Getyndze. W oparciu o specyficzny skład chemiczny bursztynu, a także analizę pyłków i skamieniałości znalezionych w pobliżu akademicy stwierdzili, że najprawdopodobniej grudka żywicy pochodzi od przedstawiciela rodziny dwuskrzydłowatych (Dipterocarpaceae); obecnie są to dominujące drzewa w lasach deszczowych południowo-wschodniej Azji. W odróżnieniu od innych bursztynów, właściwości chemiczne bursztynu indyjskiego pozwalają na jego łatwe rozpuszczenie w rozpuszczalnikach organicznych. Dzięki temu byliśmy w stanie wyekstrahować jedną z mikoryz z bursztynu i przeprowadzić analizy ultrastrukturalne za pomocą mikroskopu elektronowego. W ten sposób zbadaliśmy skamieniałą mikoryzę tak samo szczegółowo, jak przetestowalibyśmy żywe organizmy symbiotyczne - podkreśla Christina Beimforde. Naukowcy odkryli też melaninę. To pierwszy przypadek znalezienia barwnika w sfosylizowanym grzybie bądź bursztynie.
  5. Naukowcy z Ohio State University jako pierwsi na świecie udowodnili, że zmniejszająca się bioróżnorodność może przyczyniać się do epidemii grzybicy, która na całym świecie dziesiątkuje żaby. Podczas badań laboratoryjnych wykazano, że większa bioróżnorodność powoduje, iż infekcje Batrachochytrium dendrobatidis przebiegają łagodniej i trwają krócej. Dzięki większej różnorodności gatunków dochodzi do efektu rozmycia, który może łagodzić chorobę. Niektóre gatunki nie są dobrymi gospodarzami dla grzyba, inne mogą w ogóle nie chorować, a to spowalnia jej rozprzestrzenianie się - mówi Catherine Searle, zoolog i główna autorka badań. Uczona dodaje, że podobne efekty zaobserwowano już w przypadku boreliozy, która atakuje ludzi, myszy i jelenie. Dotychczas jednak nikt nie brał na poważne efektu „rozwodnienia" u płazów. Profesor zoologii Andrew Blaustein zauważa, że ochrona bioróżnorodności może pomagać w powstrzymaniu rozprzestrzeniania się chorób. To kolejny argument za ochroną różnych ekosystemów. Jasnym też jest, że łatwiej jest bioróżnorodność chronić, niż ją później przywracać. Batrachochytrium dendrobatidis może tak bardzo rozprzestrzenić się na skórze żaby, że prowadzi do śmierci wskutek zatrzymania akcji serca. Choroba tak mocno dziesiątkuje populacje żab, że zdaniem niektórych naukowców, jest to najbardziej spektakularny obserwowany przez człowieka przykład wymierania kręgowców. Dysponujemy coraz liczniejszymi dowodami na to, że bioróżnorodność powstrzymuje rozprzestrzenianie się chorób. Ubiegłoroczne badania wykazały, że gorączka Zachodniegu Nilu atakuje częściej tych obywateli USA, którzy mieszkają na obszarach, gdzie występuje... mniejsza bioróżnorodność ptaków. Z kolei inne badania dowodzą, że liczba przypadków schizomatozy może być zredukowana od 25 do 99 procent, jeśli ludzie żyją w bardziej zróżnicowanym biologicznie środowisku.
  6. Obfite i wydłużające się opady śniegu w Arktyce mogą doprowadzić do powstania warunków sprzyjających szybkiemu rozwojowi grzybów, które doprowadzą do obumarcia tutejszych roślin (Nature Climate Change). Wyniki badań brytyjsko-szwedzko-fińskiego zespołu potwierdziły, że śnieg rzeczywiście stanowi rodzaj zabezpieczającej przed mrozem otuliny, lecz jednocześnie w pewnych okolicznościach obfite i długie opady białego puchu sprzyjają szybkiemu nadmiernemu wzrostowi pewnych szczepów zabójczych grzybów. W ten sposób mogą zniknąć wszechobecne dotąd rośliny, a ich miejsce zajmą z czasem inne. Nie jest to jednak wyłącznie kwestia zwykłego przekształcenia procentowego składu flory, ponieważ w praktyce oznacza to zmianę łańcucha pokarmowego dla owadów, nornic, lemingów i polujących na nie drapieżników. Byliśmy zaskoczeni, widząc, że skrajnie wytrzymała wegetacja tundry została zabita przez atak grzybów - podkreśla dr Robert Baxter z Durham University. W pierwszych kilku latach, tak jak się tego spodziewaliśmy, izolujący wpływ śniegu pomógł wegetacji we wzroście, jednak po 6 latach został osiągnięty punkt krytyczny, przy którym grzyby rozprzestrzeniały się z dużą prędkości i niszczyły rośliny. Naukowcy chcą przez dłuższy czas obserwować cykle rozwojowe roślin i grzybów, by sprawdzić, czy mamy do czynienia z powtarzającym się i coraz bardziej destrukcyjnym zjawiskiem. Zespół porównywał wpływ zwykłych i nasilonych opadów śniegu na roślinność Arktyki. By utrzymać warunki zwiększonego opadu, zastosowano płoty śnieżne. Okazało się, że workowiec Arwidssonia empetri rozrastał się mocno pod grubszą okrywą śnieżną, zabijając większość pędów dominującego gatunku roślinnego w badanej okolicy: bażyny czarnej obupłciowej (Empetrum hermaphroditum). Do odkrycia w ogóle by nie doszło, gdyby nie decyzja naukowców, by kontynuować eksperyment dłużej niż początkowo planowano. Podjęliśmy się sprawdzenia wpływu zmiany klimatu i potencjalnego wzrostu opadów, także śniegu, na rośliny i procesy oddziałujące na wzrost, rozkład i składniki odżywcze gleby - wyjaśnia Johan Olofsson z z Uniwersytetu w Umeå. W czasie 7-letniego eksperymentu przez pięć lat śnieg działał jak ogrzewający koc. W 6. roku grzyb się szybko rozprzestrzenił, zmieniając wegetację z naturalnych zielonych płuc w źródło węgla.
  7. W lasach Borneo odkryto dziwny gatunek grzyba. Ponieważ naukowcom z San Francisco State University skojarzył się on z bohaterem kreskówki SpongeBobem Kanciastoportym, nadali mu nawiązującą do tego łacińską nazwę - Spongiforma squarepantsii. Dennis Desjardin, jedna z członkiń zespołu, podkreśla, że skoro grzyb odkryto dopiero teraz, sugeruje to, że dotąd nie poznaliśmy nawet najbardziej charyzmatycznych postaci królestwa Fungi. Grzyby odkryto w 2010 r. na terenie Parku Narodowego Wzgórz Lambir w stanie Sarawak w Malezji. Są jaskrawopomarańczowe. W zapachu można wyczuć odrobinę woni owocowych, ale przede wszystkim silną stęchliznę. Pod skaningowym mikroskopem elektronowym strefa produkcji zarodników wygląda jak dno morskie pokryte podłużnymi gąbkami, co dodatkowo utwierdziło naukowców w przekonaniu, że S. squarepantsii to wykapany SpongeBob Kanciastoporty, a nadana mu nazwa jest 100-proc. trafieniem. S. squarepantsii jest jednym z dwóch gatunków reprezentujących rodzaj Spongiforma. Drugi występuje w środkowej Tajlandii i ma inny kolor oraz zapach, jednak dokładniejsze badanie oraz analizy genetyczne wykazały, że mamy do czynienia z żyjącymi daleko od siebie krewnymi. Desjardin podkreśla, że Spongiforma są spokrewnione z grupą grzybów, do której należą borowiki szlachetne. Nowy gatunek zupełnie ich jednak nie przypomina. Gdy grzyb ten jest mokry i świeży, można z niego wykręcić wodę, a on wróci do pierwotnych kształtów. Większość grzybów tego nie robi. W przeszłości Spongiforma miały kapelusz i trzon, które z czasem zanikły. Kapelusz i trzon pomagają grzybom w rozmnażaniu. Trzon wynosi zarodniki nad powierzchnię gruntu, gdzie mogą być łatwiej przenoszone przez wiatr i zwierzęta, podczas gdy kapelusz chroni zarodniki przed wysychaniem. W swoim wilgotnym środowisku S. squarepantsii nie potrzebuje tego typu rozwiązań, stał się za to żelatynowaty lub inaczej mówiąc gumowaty. Jego przystosowanie polega na tym, by po wyschnięciu ożyć błyskawicznie w wyniku wchłonięcia niewielkich ilości wilgoci z powietrza. S. squarepantsii dołącza do grona 5% formalnie nazwanych gatunków grzybów. Mykolodzy szacują, że nie znamy jeszcze od 1,5 do 3 mln gatunków z tego dużego królestwa. Desjardin wyjaśnia, że gdy podczas paru miesięcy wyprawy zbiera się przedstawicieli różnych grup grzybów, później okazuje się, że średnio 25-30% to gatunki nieznane nauce.
  8. Brytyjscy naukowcy z Westminster University chcą zaprząc zmodyfikowane gentycznie grzyby do walki z malarią. Angray Kang i jego zespół, po latach badań odkryli, że komary zainfekowane odpowiednio zmodyfikowanym grzybem przenoszą znacznie mniej zarodźców malarii, dzięki czemu trudniej im zarazić człowieka. Zdaniem Kanga zmodyfikowane grzyby można produkować w spraju, którym będą spryskiwane ściany budynków i łóżka. Uważa on również, że podobną technikę można wykorzystać do walki innymi chorobami przenoszonymi przez owady, np. z dengą czy Wirusem Zachodniego Nilu. Brytyjczykom w prowadzeniu badań pomagali uczeni z Uniwersytetu Johnsa Hopkinsa, a były one finansowane przez amerykańskie Narodowe Instytuty Zdrowia. Z osiągnięć swoich kolegów cieszy się Andrew Read z Centrum Dynamiki Chorób Zakaźnych Pennsylvania State University. Pracował on nad podobnymi technikami, ale nie był zaangażowany w opisywane badania. Read mówi, że pomysł Brytyjczyków może nieść ze sobą mniejsze zagrożenie dla środowiska niż inne metody wykorzystujące modyfikacje genetyczne. Część naukowców krytykowała np. pomysły tworzenia i uwalniania genetycznie zmodyfikowanych komarów. Nie wiadomo bowiem, jaki wpływ na środowisko wywarłoby pojawienie się miliardów takich stworzeń. Tymczasem w przypadku grzybów, jak mówi Read, po prostu nanosisz je na ścianę i one wykonują swoją robotę. Nie musisz się martwić o ich kolejne pokolenia. Podczas testów laboratoryjnych zespół Kanga wykazał, że dzięki zmutowanym grzybom liczba zarodźców malarii przenoszonych przez komary spadła o 85%. Gdy do spraju dodano jad skorpiona odsetek ten wyniósł aż 97 procent. Brak jest, oczywiście, dowodu, że spowoduje to spadek liczby zachorowań, jednak specjaliści uważają, że mniej zarodźców w ciele pojedynczego komara powinno przełożyć się na mniejszą liczbę chorych. Gdy grzyb dostanie się do ciała komara i się tam namnoży, zapobiega przedostaniu się zarodźców malarii do ślinianek zwierzęcia. To, teoretycznie, powinno uniemożliwić zakażenie. Ponadto grzyb w ciągu kilku tygodni zabija swojego nosiciela. Na razie nie wiadomo, na ile zmodyfikowany grzyb jest bezpieczny dla środowiska. Nie ma jednak przesłanek by sądzić, iż mógłby przynieść jakieś szkody. Kang użył bowiem przemysłowo produkowanego grzyba, który, bez modyfikacji, jest wykorzystywany do zwalczania szarańczy w Australii. Kang ma nadzieję, że uda mu się zdobyć fundusze na przeprowadzenie testów w Afryce. Część specjalistów, jak np. Janet Hemingway ze Szkoły Medycyny Tropikalnej w Liverpoolu wątpi, by pomysł Kanga się sprawdził. Zauważa ona, że grzyb musiałby przetrwać podróż do Afryki, a później przeżyć kilkumiesięczny pobyt na ścianie.
  9. Przechowywane na stole lub w chlebaku pieczywo może zarosnąć pleśnią już po kilku dniach. Wystarczy jednak proste ulepszenie opakowania, w którym przechowujemy nasz chleb czy bułki, by przedłużyć termin ich przydatności do spożycia nawet do dziesięciu dni. Nowy typ opakowań ma jeszcze jedną zaletę: składnik grzybobójczy jest produktem naturalnym. Jest nim olejek cynamonowy, znany od dawna ze swojej zdolności do zwalczania mikroorganizmów. Autorami pomysłu na wzbogacanie nim papierowych woreczków są naukowcy z Uniwersytetu w Saragossie. Próby przedłużenia trwałości produktów spożywczych były podejmowane już wiele lat temu. Wśród proponowanych metod warto wymienić m.in. stosowanie światła ultrafioletowego, sztuczne dodatki chemiczne czy sterylizację produktów i/lub opakowań. Opracowana przez Hiszpanów technologia ma jednak istotną przewagę nad wieloma stosowanymi poprzednio: polega na użyciu tzw. opakowania aktywnego, czyli takiego, które jest zdolne do czynnego niszczenia mikroorganizmów po opuszczeniu zakładu wytwórczego, a nawet po otwarciu. Aby potwierdzić skuteczość opracowanej technologii badacze zaszczepili bochenki chleba pleśnią, a następnie zamknęli je w opakowaniach nowego oraz starego typu. Dzięki temu prostemu eksperymentowi zaobserwowano, że zwyczajny papier woskowy umożliwiał rozwój grzybów już po trzech dniach, zaś opakowanie zawierające 6% olejku cynamonowego powstrzymywało rozwój pleśni ze skutecznością 96%. Aktywność grzybobójcza "papieru cynamonowego" utrzymywała się nawet przez dziesięć dni. Na razie nie wiadomo, czy nowe tworzywo zostanie przyjęte przez przemysł spożywczy. Trzeba jednak przyznać, że korzyści osiągnięte dzięki zastosowaniu tej prostej metody robią wrażenie.
  10. Mszyce grochowe (Acyrthosiphon pisum), zwane też grochowiankami, są jedynymi zwierzętami na świecie, które samodzielnie wytwarzają karotenoidy. Dotąd sądzono, że żółte, czerwone i pomarańczowe barwniki, będące naturalnymi przeciwutleniaczami oraz prekursorami witaminy A, wytwarzają jedynie rośliny, a zwierzęta muszą je sobie zapewnić, odpowiednio komponując dietę. Prof. Nancy Moran z University of Arizona zwraca uwagę na rozpowszechnienie karotenoidów. Wg niej, jeśli się dobrze rozejrzeć, są niemal wszędzie. Zapewniają dobry wzrok, "dbają" o zdrowie skóry czy wzrost kości. To do tej grupy barwników należy beta-karoten - główny prekursor witaminy A, który nadaje korzeniowi marchwi pomarańczowy kolor. Złota barwa żółtka, róż krewetek i łososia, czerwień flamingów, pomidorów, marchewek, papryki, argemonów meksykańskich czy aksamitek – [wszystko to] zawdzięczamy właśnie karotenoidom. Moran i Tyler Jarvik postanowili sprawdzić, skąd wzięła się niezwykła dla zwierząt umiejętność wytwarzania karotenoidów. Doszło do przyswojenia i skopiowania przez owady genu grzybów. Jak wyjaśnia pani biolog, transfer genów między mikroorganizmami nie jest niczym niezwykłym, ale po raz pierwszy odkryto działający gen grzybów, który stanowiłby część zwierzęcego DNA. Zwierzęta mają duże potrzeby, odzwierciedlające utratę genów przodków. To powód, dla którego musimy z pokarmem zapewnić sobie wiele aminokwasów i witamin. Do tej pory sądzono, że nie ma prostego sposobu na odzyskanie tych utraconych umiejętności. Przypadek mszyc grochowianek pokazuje jednak, że w rzeczywistości możliwe jest odtworzenie zdolności produkowania potrzebnych składników. Niewykluczone, że to niezwykle rzadka sytuacja, lecz zazwyczaj w studiach genomicznych pierwszy przykład okazywał się tylko jednym z wielu podobnych. U A. pisum, które mogą być czerwone lub zielone, występuje dziedziczenie klonalne. Oznacza to, że matki wydają na świat identyczne pod względem genetycznym córki. Kiedy więc w laboratorium Amerykanów u czerwonej odmiany 5A pojawiły się żółtozielone młode, wiadomo było, że zaszła mutacja. Nowe pokolenie oznaczono jako 5AY. Żółtawe mutanty uzyskaliśmy w 2007 roku. Od tej pory trzymaliśmy je w laboratorium jako maskotki. Sądziłam, że kiedyś uda nam się ustalić, co właściwie zaszło. W wyspecjalizowanych komórkach wewnątrz mszyc żyją symbiotyczne bakterie. Są one przekazywane z matki na dzieci i zapewniają owadom dostawy niezbędnych substancji odżywczych. Gdy giną bakterie, umierają też mszyce. Moran, specjalistka od A. pisum, wiedziała jednak, ze 3 podstawowe gatunki bakterii nie wytwarzają karotenoidów. Barwniki nie mogły też pochodzić z diety. Mszyce odżywiają się sokiem mlecznym roślin, ale jest on ubogi w karotenoidy. Co więcej, barwniki owadów różniły się od występujących zazwyczaj w roślinach. Pod koniec zeszłego roku naukowcy znali już cały genom mszyc grochowianek. Wtedy właśnie rozpoczęły się poszukiwania genów karotenoidów. Szlaki ich biosyntezy są takie same u wszystkich organizmów, dlatego zadanie nie należało do trudnych. Ku uciesze Moran sekwencjonowano genom czerwonej odmiany grochowanki, która dysponuje dodatkową kopią genu karotenoidów. Po zakończeniu wstępnego etapu naukowcy próbowali ustalić, czy geny pochodziły z DNA mszycy, czy też raczej owady zawdzięczały je mniej popularnym bakteriom symbiotycznym lub zanieczyszczeniu grzybami. Eliminując bakterie, Moran i Jarvik ustalili, że zabieg ten nie zmienił barwy młodych. Śledzenie linii odmian czerwonej, zielonej i żółtej pokazało, że w grę wchodzi dziedziczenie mendlowskie (chromosomowe). Oznacza to, że DNA kodujące czerwień stanowi część genomu mszycy. Ostatecznie ustalono, że sekwencja kodująca karotenoidy różniła się od bakteryjnych genów dla barwników, lecz pasowała do ich odpowiedników u niektórych patogennych grzybów.
  11. Wykorzystując teoretyczne modelowanie, zdjęcia i pomiary, amerykańscy naukowcy opracowali dwa wzory idealnego blaszkowania grzyba. Co prawda nie występują one w naturze, ale i tak grzyby skutecznie się rozmnażają i uznaje się je za inżynieryjny majstersztyk (Mycological Research). Budowa grzybów była badana przez mykologów przez ponad wiek. Od dawna wiadomo zatem, że blaszki, element budowy owocnika grzybów owocnikowych, pomagają w rozprowadzaniu zarodników. Zarodniki są katapultowane z powierzchni blaszek. Na początku przebywają w poziomie krótki odcinek, a potem opadają pionowo, póki nie natrafią na prądy powietrza wirujące wokół kapelusza – wyjaśnia profesor Nicholas Money z Miami University w Ohio. Moneyowi i doktorowi Markowi Fischerowi z College of St Joseph udało się opracować dwa wzory grzyba doskonałego. W naturze grzyby blaszkowe mają blaszki, które się rozgałęziają. Dzięki temu zjawisku mogą zwiększyć swoją powierzchnię nawet 20-krotnie i skuteczniej rozprowadzać powiększoną o ten sam rząd wielkości liczbę zarodników. Grzyby są dziełami sztuki naturalnej inżynierii – uważa Money, co nie zmienia faktu, że żaden z nich nie wykorzystuje projektu idealnego. Odkryliśmy, że ułożenia najefektywniejsze z inżynieryjnego punktu widzenia nie występują w przyrodzie. Chodzi o ciasną spiralę pokrywającą cały hymenofor i o wzór przypominający żaluzję poziomą, czyli wenecką. Nie mogą się one wykształcić w związku z ograniczeniami wynikającymi z prawidłowości rozwoju owocnika. Od samego początku układ komórek prowadzi do pojawienia się symetrii promienistej. Dobór naturalny doprowadził do wyrzeźbienia rozmaitych układów promienistych, które sprawdzają się bardzo dobrze albo na tyle dobrze, by pozwolić grzybom "rozkwitać" przez dziesiątki milionów lat. Naukowcy żywo interesują się, jak można by wykorzystać blaszki grzybów i inne naturalne struktury do ulepszenia różnych urządzeń, np. grzejników, klimatyzatorów czy filtrów do uzdatniania wody. W kolejnym etapie badań Money i Fischer zamierzają sprawdzić, jaki typ grzybów jest najlepszy w rozprowadzaniu zarodników.
  12. Śmiertelna choroba chytridiomycosis, wywoływana przez grzyba Batrachochytrium dendrobatidis, dziesiątkuje płazy obu Ameryk, Australii i Afryki, a nawet doprowadza do wytrzebienia całych populacji. Na szczęście naukowcy zauważyli, że niektóre gatunki są mniej podatne na zachorowanie niż inne. Może być to światełko nadziei dla żab. Jonathan Q. Richmond - autor odkrycia - w najnowszym numerze BioScience sugeruje, że poszczególne osobniki mogą "na własną rękę" rozwinąć zdolności obronne przeciwko groźnemu grzybowi. Sądzi on, że nieuwzględnienie odporności nabytej w przewidywaniu kierunków rozprzestrzeniania się choroby stanowi ogromny błąd i naraża kolejne gatunki na zagładę. Naukowcy przeprowadzili eksperyment polegający na zainfekowaniu płazów Batrachochytrium dendrobatidis, a następnie potraktowaniu ich chloramfenikolem - silnym antybiotykiem o działaniu bakteriostatycznym, zarówno wobec bakterii Gram-dodatnich, jak i Gram-ujemnych, stosowanym w przypadkach kokluszu, tyfusu plamistego czy duru brzusznego. Okazało się, że po takim "hartowaniu" żaby były bezpieczne w przypadku kolejnego zetknięcia z zarodnikami grzyba. Na razie nie wiadomo, jak antybiotyk ma się do przedstawiciela zupełnie innego królestwa. Zagadkę zwiększonej odporności niektórych żab może wyjaśniać właśnie chloramfenikol - jedyny występujący naturalnie w organizmie związek nitrowy. Po prostu pojedyncze osobniki mogą mieć (na razie nie wiadomo dlaczego) zwiększoną jego ilość. Inne badania wskazują, że na rozwój choroby ma wpływ miejsce zarażenia zwierzęcia. Naukowcy z Ameryki Północnej dowiedli, że spośród tych, które przeżyły infekcję Batrachochytrium dendrobatidis, ponowne zakażenie lepiej przechodziły osobniki po raz pierwszy stykające się z zarodnikami grzyba w środowisku suchym, a drugi raz w mokrym, niż zarażone dwukrotnie w środowisku wodnym. Póki co jedyny skuteczny sposób walki z grzybem to wystawianie chorego osobnika na działanie temperatury powyżej 28 stopni Celsjusza, jednak takie rozwiązanie nie jest możliwe do zastosowania na szeroką skalę.
  13. Japońscy naukowcy znaleźli alternatywę dla odbarwiania włosów wodą utlenioną przed właściwym farbowaniem np. na jasny kolor. Wykorzystano enzym z grzybów, który naturalnie rozkłada melaninę. Dr Kenzo Koike z Kao Corporation's Beauty Research Center w Tokio podkreśla, że używanie wody utlenionej wiąże się z efektami ubocznymi. Ponieważ włosy rosną mniej więcej centymetr na miesiąc, zabieg trzeba powtarzać, a H2O2 uszkadza włosy, przez co stają się one łamliwe i pozbawione połysku. Poza tym związek ten podrażnia skórę. Wydaje się, że naukowcy znaleźli na to sposób – enzym z grzybów Basidiomycete ceriporiopsis (rodzaju białej zgnilizny), które jak dotąd okazały się przydatne np. podczas usuwania zanieczyszczeń gleby. Enzym ma jeszcze jeden plus. Doskonale radzi sobie z wolnymi rodnikami, a woda utleniona prowadzi do ich powstania, dlatego jej stosowanie wiąże się z uszkodzeniem włosów. Koike zaznacza, że wyizolowany enzym może uzupełnić skład tradycyjnych odbarwiaczy, dzięki czemu produkty koloryzujące będą zawierać mniej H2O2. Japończycy właśnie nad nimi pracują. Ponieważ enzym potrzebuje odrobiny wody utlenionej, by dokończyć reakcję chemiczną, nie da się całkowicie zrezygnować z roztworu nadtlenku wodoru. Testy laboratoryjne wykazały, że enzym rozkłada zarówno sztuczną melaninę, jak i naturalny barwnik ludzkiego włosa. Na razie sporą przeszkodą jest dostęp do niewielkich ilości enzymu. Z grzybów udaje się pozyskać ok. miligrama enzymu, dlatego kiedy naukowcy zdołali zidentyfikować kodujący go gen, został on wprowadzony do Escherichia coli. Niestety, ta "fabryka" się nie sprawdziła i badacze poszukują lepszych mikroorganizmów, które można by wykorzystać do tego celu. Niedługo chemicy zamierzają zidentyfikować mechanizm, za pośrednictwem którego enzym rozkłada melaninę. "Chociaż spodziewam się, że melanina jest degradowana przez utlenianie, nie znamy dokładnego mechanizmu reakcji".
  14. Zapach lasek wanilii nieodparcie kojarzy się z Bożym Narodzeniem. Nie wiadomo jednak, co się stanie z największymi na świecie plantacjami nadrzewnych pnączy na Madagaskarze, ponieważ niszczy je choroba wywoływana przez nieznane grzyby. W zeszłym tygodniu Simeon Rakotomamonjy i zespół z Narodowego Centrum Badań nad Rozwojem Obszarów Wiejskich w Antananarywie donieśli, że patogen zaatakował 80% upraw wanilii płaskolistnej (Vanilla planifolia) w dwóch regionach. Naukowcy sądzą, że rozprzestrzenianie się choroby ułatwił skok cen w latach 90. Plantatorzy zaczęli wtedy gęściej sadzić rośliny, nie zapewniając im optymalnego zacienienia i wilgotności. Ponieważ wanilia jest rozmnażana wegetatywnie (przez cięcie pędu na kawałki o długości 60-90 cm) spada też zróżnicowanie genetyczne gatunku.
  15. Na początku XX wieku Francja zaopatrywała rynek w 1000 ton czarnych trufli rocznie. Obecnie produkcja spadła do zaledwie 40-50 t. Naukowcy zamierzają jednak sklonować cenne grzyby, hodować je przez rok w probówce i dopiero potem umieszczać w naturalnych warunkach. Mają nadzieję, że w ten sposób uda im się odtworzyć zasoby workowców. Jeden z francuskich regionów Corrèze podpisał właśnie kontrakt z firmami Delpeyrat (producentem truflowych konserw) i STEF-TFE (przewoźnikiem). Przez 3 lata będą wspólnie pracować nad odnową czarnej trufli. Zamierzają sprawdzić, co decyduje o wyśmienitym i wyjątkowym smaku grzyba: gleba, klimat czy drzewa, z którymi łączą go związki mikoryzowe. Na początku sklonowane trufle będą rosnąć w probówkach razem z drzewkami. Po mniej więcej roku Francuzi posadzą je w ziemi. Niektóre drzewa muszą jednak rosnąć przez co najmniej 20 lat, zanim psy lub świnie wywąchają przy ich korzeniach trufle. Jacques Pebeyre, zwany królem trufli, ubolewa nad tym, że młodzi ludzie wolą jeść płatki zbożowe niż zajmować się hodowlą żywego czarnego złota. Dlatego też nie jest przeciwny pomaganiu naturze.
  16. W dobie kończących się zasobów ropy naftowej każdy pomysł na poszukiwanie alternatywnych źródeł energii jest na wagę złota. Jednym z możliwych rozwiązań tego problemu jest pozyskiwanie energii z celulozy, wytwarzanej w przyrodzie w astronomicznych wręcz ilościach. Do tej pory największy problem z jej wykorzystaniem polegał jednak na tym, że nie znano dostatecznie dokładnie organizmów, które byłyby w stanie rozkładać ten cukier. Badania wykonane przez naukowców z Laboratorium w Los Alamos oraz Połączonego Instytutu Badania Genomu przy amerykańskim Departamencie Energii rzucają nowe światło na jednego z potencjalnych wytwórców energii. Badania dotyczyły wyjątkowo "żarłocznego" grzyba z gatunku Tricoderma reesei. W naturze jednym z najważniejszych źródeł energii jest dla tego organizmu zawarta we włóknach roślinnych celuloza, która ulega strawieniu dzięki wydzielanemu do otoczenia enzymowi - celulazie. Badacze spekulują, że oprócz roślin możliwe byłoby wykorzystanie jako "paliwa" także niektórych rodzajów odpadów komunalnych, co pozwoliłoby na wydajne wytwarzanie energii przy jednoczesnym zmniejszeniu objętości składowanych śmieci. Skłoniło to naukowców do dokładniejszego zbadania fizjologii wspomnianego grzyba. Okoliczności odkrycia T. reesei mają niewiele wspólnego z optymizmem, który dziś towarzyszy jego potencjalnemu zastosowaniu w gospodarce człowieka. Początkowo był uznawany za plagę, gdyż w czasie II wojny światowej powodował znacznie przyśpieszony rozkład tkanin, z których uszyte były m.in. mundury i namioty wojskowych. Dopiero po latach postanowiono zbadać możliwość jego wykorzystania do kontrolowanego rozkładu celulozy, by w ten sposób uzyskać energię. Badacze postanowili określić czynniki, które zadecydowały o zdolności grzyba do wyjątkowo intensywnego rozkładu celulozy. Analizy genetyczne wykazały, ku zaskoczeniu samych naukowców, że T. reesei dysponuje znacznie mniejszą liczbą genów odpowiedzialnych za odżywianie się włóknami roślinnymi niż jego odżywiający się podobnie krewniacy. Z drugiej jednak strony zauważono, że organizm ten posiada wyjątkowo wydajny mechanizm sekrecji, czyli wydzielania enzymu do środowiska. Jest to bardzo ważne, gdyż z uwagi na ogromny rozmiar cząsteczek celulozy niemożliwe jest jej trawienie wewnątrz komórek - konieczne jest rozłożenie celulozy pozakomórkowo, a następnie pobranie powstających produktów rozpadu. Na dodatek geny odpowiedzialne za syntezę celulazy są najprawdopodobniej ułożone w tzw. kasetach, czyli sterowanych wspólnie grupach. Zapewnia to synchronizację związanych z określonym zadaniem procesów, dzięki czemu wydajność (oraz w konsekwencji przydatność w przemyśle) takiego systemu wzrasta. Według wizji badaczy, proces wytwarzania energii z celulozy zachodziłby dwustopniowo. Na pierwszym etapie do roztworu zawierającego celulozę (a więc np. do odpadów rolniczych, komunalnych itp.) byłaby dodawana wyizolowana i oczyszczona z T. reesei celulaza. W efekcie po pewnym czasie doszłoby do rozkładu celulozy na znacznie bardziej przyswajalną glukozę. W tym momencie do komory dodawane byłyby znane doskonale drożdże piekarskie Saccharomyces cerevisiae. Dzięki ich aktywności możliwe byłoby wytworzenie etanolu z uwolnionej uprzednio glukozy. Alkohol byłby następnie oczyszczany przez prostą destylację, stając się bardzo wydajnym biopaliwem. Odkrycie Amerykanów może stać się ważnym krokiem naprzód w realizacji idei wykorzystania glukozy do celów energetycznych. Pomysł użycia tego cukru nie jest nowy, lecz przez długi czas brakowało odpowiednio wydajnych metod pozyskiwania z niej użytecznej dla ludzi energii. Teraz, gdy poznano szczegóły fizjologii T. reesei, wzrasta szansa na ujarzmienie energii ukrytej w wiązaniach chemicznych wewnątrz cząsteczek celulozy. Zdobyta wiedza będzie też z pewnością pomocna przy próbach wyhodowania jeszcze wydajniejszych szczepów tego wyjątkowego grzyba. Szczegółowe wyniki badań zostały opublikowane w najnowszym numerze czasopisma Nature Biotechnology.
×
×
  • Dodaj nową pozycję...