Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' ESA' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 7 wyników

  1. Europejska Agencja Kosmiczna i Uniwersytet Przyrodniczy we Wrocławiu podpisały w piątek - 24 czerwca - porozumienie, w wyniku którego w Polsce powstanie nowe laboratorium ESA: ESA_Lab@UPWr. Laboratorium ma być miejscem rozwijania systemów nawigacyjnych, transferu technologii, a także wymiany dla młodych naukowców, którzy chcą się rozwijać w obszarze badań kosmicznych i satelitarnych. Zakres działalności ESA_Lab@UPWr ESA_Lab@UPWr będzie się specjalizować w obszarze rozwoju Globalnych Nawigacyjnych Systemów Satelitarnych (GNSS) do celów precyzyjnego pozycjonowania i nawigacji, wyznaczania orbit satelitów niskich i średnich, transferu czasu, badania ziemskiej atmosfery, w tym troposfery oraz jonosfery (czyli tzw. pogody kosmicznej), ruchu obrotowego Ziemi, a także procesów geodynamicznych - podkreślono w komunikacie uczelni. Istotną częścią działalności będzie też organizowanie wspólnych szkoleń, seminariów i wreszcie wymiany dla studentów i młodych naukowców, którzy chcą się rozwijać w zakresie badań kosmicznych i satelitarnych. Inne ESA_Lab@ Istnieje już kilkanaście laboratoriów ESA, założonych w europejskich instytucjach naukowo-dydaktycznych. Warto dodać, że wrocławskie centrum jest jedynym specjalizującym się w nawigacji satelitarnej w tej części Europy. Sieć naukowa, którą chce stworzyć ESA, ma promować młode talenty czy stanowić ułatwiający transfer technologii łącznik między uczelniami, instytucjami badawczymi i przemysłem kosmicznym. Dotychczasowa współpraca UPWr i ESA Współpraca UPWr i ESA trwa już wiele lat. Obecnie – w ramach włosko-francusko-polskiego konsorcjum - UPWr pracuje nad finansowanym przez ESA projektem systemu nawigacyjnego dla Księżyca. Polscy specjaliści odpowiadają m.in. za definicję struktury sygnału, który będzie nadawany przez satelity krążące wokół Srebrnego Globu czy analizę możliwości wykorzystania na potrzeby misji księżycowych słabych sygnałów systemów GPS czy Galileo docierających z okolic Ziemi. Uniwersytet Przyrodniczy ma jednak dłuższe doświadczenie we współpracy z ESA. Obie instytucje zajmowały się np. wyznaczaniem precyzyjnych orbit satelitów Galileo, GPS i GLONASS oraz wspólnie udowodniły – na podstawie ruchu satelitów nawigacyjnych – że Einstein prawidłowo przewidział zmiany kształtów orbit obiektów krążących wokół Ziemi. « powrót do artykułu
  2. Naukowcy z Instytutu Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu są kluczowymi członkami międzynarodowego konsorcjum, któremu Europejska Agencja Kosmiczna (ESA) przyznała finansowanie na stworzenie koncepcji systemu nawigacji dla misji księżycowych. System taki znakomicie ułatwi zarówno badania samego Księżyca, jak i realizację planów zakładających wykorzystanie Srebrnego Globu jako etapu w załogowej misji na Marsa. Na Ziemi dysponujemy kilkoma satelitarnymi systemami nawigacji, w tym najpopularniejszym GPS-em. Jednak podobne systemy nie istnieją dla Księżyca. Dlatego też misja GRAIL, badająca pole grawitacyjne Srebrnego Globu, mogła świetnie zmapować jego jedną stronę, tę widoczną z Ziemi. Gdy jednak GRAIL znalazł się po przeciwnej stronie Księżyca, tracił kontakt z satelitami nawigacyjnymi, przez co jego możliwości dokładnego określania pozycji znacznie się zmniejszały. W ostatnich latach zarówno państwowe agencje kosmiczne, jak i firmy prywatne, coraz częściej wspominają o eksploracji satelity Ziemi. NASA chce za kilka lat wysłać pierwszą od wielu dekad załogową misję na Księżyc, planuje budowę stacji na orbicie Srebrnego Globu oraz prowadzenie prac na jego powierzchni. Zarówno pracujący tam ludzi, jak i autonomiczne urządzenia, będą potrzebowali skutecznego systemu do określania własnej pozycji. ESA prowadzi program Moonlight, w ramach którego badane są możliwości zapewnienia precyzyjnej nawigacji i komunikacji na całej powierzchni Księżyca. Program jest wieloetapowy, zakłada stopniowe osiągnięcie zamierzonego celu. Najpierw konieczne będzie zapewnienie możliwości pozycjonowania na orbicie transferowej Ziemia-Księżyc, następnie dla satelitów na orbicie wokół Księżyca w końcu dla podejścia do lądowania oraz operacji na powierzchni Srebrnego globu. Projekt zakłada, że w latach 2022–2025 wykorzystywane będą istniejące już konstelacje satelitów nawigacyjnych oraz odbiorniki księżycowe. W fazie II, przewidzianej na lata 2025–2035 na orbitę księżycową ma trafić kilka satelitów, a z powierzchni Księżyca mają być transmitowane dodatkowe sygnały. W końcu fazie III, czyli po roku 2035, ma funkcjonować pełny księżycowy system nawigacyjny. Polscy naukowcy, prof. Krzysztof Sośnica, dr Radosław Zajdel i dr Grzegorz Bury, biorą udział w pracach projektu ATLAS, który otrzymał właśnie od ESA finansowanie w ramach fazy II. Zadaniem ATLAS-a będzie zbadanie różnych rozwiązań technicznych dla księżycowego systemu nawigacyjnego, sprawdzenie możliwości jedno- i dwukierunkowej komunikacji pomiędzy Ziemią a satelitami oraz księżycowymi przekaźnikami i satelitami. Maj powstać też procedury transformacji pomiędzy księżycowymi, ziemskimi i niebieskimi (inercjalnymi) układami odniesienia. Członkowie projektu ATLAS będą musieli też przeprowadzić test jakości pozycjonowania zarówno na Księżycu jak i na jego orbicie.   « powrót do artykułu
  3. Wysięgniki stworzone na potrzeby misji JUICE, jednej z dwóch największych misji realizowanych przez Europejską Agencję Kosmiczną, trafią za kilka dni do Niemiec, gdzie przejdą ostatnie testy magnetyczne – poinformowała w czwartek Astronika, polska firma, która je zbudowała. JUpiter ICy moons Explorer (JUICE) to pierwsza duża misja Europejskiej Agencji Kosmicznej (ESA), realizowana w ramach programu Cosmic Vision (Kosmiczna Wizja) na lata 2015-2025; jej łączny koszt sięga niemal 900 mln euro. Sonda będzie badała atmosferę największej planety Układu Słonecznego - Jowisza oraz jego księżyców: Europy, Kallisto i Ganimedesa. Sonda misji JUICE będzie wyposażona w różne instrumenty badawcze. Polska firma Astronika przygotowuje m.in. wysięgniki, na których końcach zamontowane będą sondy do pomiarów plazmy (Langmuir Probe – Plasma Wave Instrument - LP-PWI). W czwartek, w komunikacie prasowym przesłanym PAP Astronika poinformowała, że wykonane przez nią instrumenty zostaną w najbliższych dniach przetransportowane do Niemiec, gdzie przejdą ostatnie testy magnetyczne. Wcześniej instrumenty stworzone przez Astronikę przeszły szereg innych testów. Po ostatnich próbach w Niemczech zostaną przetransportowane do siedziby głównego integratora satelity – Airbus Defence and Space w niemieckim Friedrichshafen, gdzie pod koniec 2020 zostaną na stałe przyłączone do satelity badawczego, który w 2022 roku wyleci w kierunku Jowisza. Głównym zadaniem wysięgników będzie rozłożenie się na odległość 3 metrów od satelity badawczego i ustawienie czujników dokładnie pod kątem 135 st., aby umożliwić im badanie plazmy znajdującej się w magnetosferze Jowisza – czytamy w informacji przesłanej PAP. Jak twierdzi Łukasz Wiśniewski, członek zarządu Astroniki i manager projektu, stworzenie instrumentów wymagało od zespołu projektowego nieszablonowego podejścia i opracowania innowacji mających sprostać kosmicznym wyzwaniom. Stworzone na potrzeby misji JUICE urządzenia są niezwykle lekkie, ważą poniżej 1,3 kilograma. Musiały zostać zaprojektowane w taki sposób, żeby wytrzymać duże obciążenia, którym zostaną poddane, a także, aby podczas otwierania nie zniszczyły same siebie – mówi Wiśniewski cytowany w komunikacie. Dodał, że wysięgniki są wytrzymałe na ekstremalne temperatury. W czasie swojej podróży urządzenia stworzone przez polską firmę będą musiały wytrzymać zarówno temperaturę około 200 st. C w okolicach Wenus, jak i nawet -200 st. C, kiedy sonda znajdzie się w cieniu Jowisza. Jak wynika z informacji przesłanej PAP, polscy inżynierowie stworzyli pięć egzemplarzy lotnych instrumentów LP-PWI. Cztery z nich zostaną finalnie przyłączone do satelity i wyruszą w podróż w kosmos, a jeden służy jako egzemplarz zapasowy. Urządzenia zostały od początku zaprojektowane i wyprodukowane przez Polaków z wykorzystaniem szeregu innowacyjnych technologii – podkreślono. Jak informuje Astronika, oprócz urządzeń LP-PWI firma opracowała na potrzeby misji JUICE także drugi rodzaj mechanizmu - system anten pod nazwą RWI – Radio Wave Instrument. Mechanizm ten obecnie znajduje się w fazie testów, jednak docelowo również stanie się częścią sondy badawczej JUICE. Obydwa urządzenia zostały stworzone jako część projektów realizowanych we współpracy z Instytutem Fizyki Plazmy w Uppsali, Centrum Badań Kosmicznych Polskiej Akademii Nauk oraz japońskim Tohoko University. Start misji JUICE zaplanowany jest na połowę 2022 roku. Termin jest sztywno ustalony ze względu na korzystne, wzajemne ułożenie w tym czasie Ziemi, Wenus i Marsa. Sonda będzie bowiem korzystała z asyst grawitacyjnych tych planet. Po przebyciu 600 milionów kilometrów, próbnik znajdzie się na orbicie Jowisza w 2029 r., gdzie będzie prowadzić obserwacje przez co najmniej trzy lata. « powrót do artykułu
  4. Unia Europejska dała zielone światło i przyznała znaczące fundusze niemal wszystkim propozycjom złożonym przez Europejską Agencję Kosmiczną. Po 2-dniowym spotkaniu budżetowym w Hiszpanii ESA otrzymała na kolejne 3 lata o ponad 20% więcej środków niż w poprzednim analogicznym okresie. To największy od 25 lat wzrost budżetu Europejskiej Agencji Kosmicznej. Dzięki temu możliwe będzie: jednoczesne utrzymanie dwóch dużych laboratoriów kosmicznych, jednego rejestrującego promieniowanie rentgenowskie i drugiego obserwującego fale grawitacyjne; przygotować misję na Urana i Neptuna; wziąć udział w projekcie NASA dotyczącym przywiezienia na Ziemię próbek z Marsa; zwiększyć zakres badań klimatu Ziemi oraz rozwinąć technologię rakiet wielokrotnego użytku. Przedstawiciele ESA bardzo często wychodzili zawiedzeni z wcześniejszych spotkań z ministrami państw UE. Musieli rezygnować z projektów, które nie otrzymały finansowania. Tym razem było jednak inaczej. Szef Agencji, Jan Wörner, mówi, że przez ostatnie 2 lata przygotowywano propozycje i lobbowano za nimi. NASA ma jeden rząd. My mamy 22, stwierdził. Ku jego zdziwieniu okazało się, że tym razem ministrowie nie odrzucili żadnego z projektów. Na najbliższe trzy lata Europejska Agencja Kosmiczna będzie dysponowała budżetem w wysokości 12,5 miliarda euro. Podczas poprzedniego spotkania budżetowego, z roku 2016, przyznano jej 10,3 miliarda euro. Dla porównania, przyszłoroczny budżet NASA to 22,6 miliarda USD, a łącznie w latach 2017–2019 NASA miała do dyspozycji kwotę niemal 62 miliardów USD. To była niespodzianka. Przyznano więcej, niż chcieliśmy. To dobra wiadomość, cieszy się Wörner. Ponadto ESA otrzymała dodatkowo 1,9 miliarda euro na prowadzenie obowiązkowych projektów, na które muszą zgodzić się wszystkie kraje biorące udział w pracach ESA. W ramach tych dodatkowych pieniędzy rozwijany będzie m.in. projekt Laser Interferometer Space Antenna (LISA), czyli budowa obserwatorium fal grawitacyjnych. ESA musi się też pospieszyć, jeśli chce dołączyć do szykowanej przez NASA misji na Urana i Neptuna. Okienko startowe do misji otworzy się bowiem około roku 2030. Znacząco wzrósł budżet przeznaczony na badania Ziemi. Na ten cel ESA może wydać w ciągu trzech lat aż 1,81 miliarda euro. To o 29% więcej, niż wnioskowano. Rozwijany będzie też dział eksploracji kosmosu, w skład którego wchodzą projekty związane z Międzynarodową Stacją Kosmiczną, Księżycem i Marsem. ESA zobowiązała się, że będzie partycypowała w kosztach utrzymania MSK do roku 2030, będzie współfinansowała rozwijany przez NASA projekt Lunar Gateway oraz rozpocznie budowę podzespołów do wspólnej z NASA misji przywiezienia marsjańskich próbek na Ziemię. Jedynym obszarem badawczym, który nie przekonał ministrów w pełni był nowy dla ESA temat dotyczący bezpieczeństwa kosmicznego. W jego ramach Agencja skupi się na badaniach kosmicznej pogody oraz obiektów bliskich Ziemi. O ile projekt badań nad uchronieniem planety przed uderzeniem asteroidy zyskał pełne finansowanie, to już propozycja umieszczenia w punkcie Lagrange'a satelitów obserwujących rozbłyski słoneczne nie otrzymała pełnego wsparcia finansowego. « powrót do artykułu
  5. Naukowcy z Centrum Badań Kosmicznych PAN opracowali metodę automatycznego i szybkiego tworzenia szczegółowych map pokrycia terenu w skali całego świata. Prototyp mapy, na razie obejmującej tylko Europę, powstał na zlecenie Europejskiej Agencji Kosmicznej. Mapa przedstawia stan pokrycia terenu w Europie w roku 2017 i uwzględnia 13 najistotniejszych klas, w tym obszary rolnicze, lasy (osobno liściaste i iglaste), tereny zbudowane, bagna, torfowiska. Do jej opracowania wykorzystano aż 15 tysięcy zdjęć z satelitów Sentinel-2. Najmniejsze rozróżnialne szczegóły mapy mają rozmiar 10 metrów, co oznacza, że dane są aż 2,5 tysiąca razy bardziej szczegółowe niż najpowszechniej stosowana dotąd mapa tego rodzaju (CORINE). Dzięki zastosowaniu w pełni automatycznych algorytmów produkcja nowej mapy zajęła jedynie 6 tygodni. Metodę klasyfikacji pokrycia terenu, która pozwoliła na tak duży postęp, opracowali naukowcy z Zakładu Obserwacji Ziemi w Centrum Badań Kosmicznych PAN. W swojej pracy wykorzystali podejście nazywane „uczeniem maszynowym”: badacze wskazują dane referencyjne dla algorytmu, na podstawie których komputer sam uczy się rozpoznawać zadany typ pokrycia terenu w dowolnym miejscu na świecie. Naukowcy przetestowali swoją metodę w Chinach, Kolumbii, Namibii, Niemczech i Włoszech, po czym użyli jej do wygenerowania nowej mapy pokrycia terenu w Europie. Największym wyzwaniem przy opracowaniu algorytmu okazało się znalezienie odpowiednich danych referencyjnych. Z reguły takie dane muszą być równie szczegółowe jak powstająca w oparciu o nie mapa. Tymczasem globalne bazy danych oferowały informacje kilkadziesiąt razy mniej precyzyjne w stosunku do oczekiwań. Aby jak najbardziej zmniejszyć ryzyko stosowania danych o większej niepewności, naukowcy z CBK PAN zaproponowali innowacyjne podejście analityczne, które finalnie pozwoliło osiągnąć dokładność klasyfikacji pokrycia terenu sięgającą aż 86%-89% w skali Europy (93% dla Polski). Do sukcesu przedsięwzięcia przyczyniła się także specyfika wykorzystanych danych satelitarnych. Pochodziły one z pary europejskich satelitów Sentinel-2, wystrzelonych w ramach programu Copernicus. Pracując w tandemie, satelity pokrywają swoim zasięgiem obszar Europy co 5 dni (około 70 razy w ciągu roku). Dzięki temu polscy naukowcy mogli klasyfikować pokrycie terenu w dowolnym obszarze kontynentu w oparciu aż o średnio 20 najlepszych zobrazowań z roku. Agregacja takiej serii obserwacji umożliwiła nie tylko realizację celu w postaci wysokiej dokładności końcowej mapy, ale także pomogła uporać się z największym problemem zdjęć optycznych – zachmurzeniem. Prace nad mapą i algorytmem klasyfikacji pokrycia terenu prowadzone były w ramach trzyletniego projektu Sentinel-2 Global Land Cover (S2GLC), finansowanego przez Europejską Agencję Kosmiczną (ESA). Centrum Badań Kosmicznych PAN (lider projektu; autor algorytmu i oprogramowania do klasyfikacji danych) współpracowało z partnerami z Niemiec (firmami IABG, EOEXPLOR i Uniwersytetem w Jenie) oraz firmą CloudFerro - operatorem platformy CREODIAS. Infrastruktura informatyczna CREODIAS została wykorzystana do przetworzenia kilkunastu tysięcy zdjęć satelitarnych. Cyfrowe, satelitarne mapy pokrycia terenu stanowią nowoczesny odpowiednik papierowych map tematycznych. Dzięki cyfrowej naturze pozwalają w łatwy i szybki sposób dokonywać różnych analiz środowiskowych – CBK PAN współpracuje na tym polu m.in. z Głównym Urzędem Statystycznym. Satelity konstelacji Sentinel są odpowiedzią na potrzebę opracowania m.in. baz danych o pokryciu terenu charakteryzujących się większą dokładnością, większą szczegółowością i częstszą aktualizacją (coroczną). Ze względu na dużą ilość danych konieczne jest tworzenie algorytmów automatyzujących proces przetwarzania informacji satelitarnych. Badania realizowane w CBK PAN wpasowują się w ten globalny trend. « powrót do artykułu
  6. Jutro wystartuje misja BepiColombo, której zadaniem jest zobrazowanie Merkurego w niespotykany dotychczas sposób. Merkury to wyjątkowy obiekt. To najmniejsza planeta Układu Słonecznego. W południe temperatury na niej sięgają 425 stopni Celsjusza, by przed świtem spaść do -180 stopni. Ma on też orbitę o wyjątkowo dużym mimośródzie. Jej peryhelium znajduje się w odległości 46 milionów, a aphelion – 70 milionów kilometrów od Słońca. Merkury znajduje się blisko Ziemi, jednak trudno jest się doń dostać. Dotychczas odwiedziły go jedynie 2 pojazdy wysłane z naszej planety. Międzynarodową misję BepiColombo nazwano tak na cześć włoskiego naukowca, matematyka i inżyniera Giuseppe „Bepi” Colombo. Opisał on ja, korzystając z asysty grawitacyjnej Wenus, można dostać się do Merkurego. NASA z powodzeniem przetestowała jego pomysły wysyłając pojazd Mariner 10. Przeleciał on blisko Merkurego dwukrotnie w 1974 roku i raz w 1975, dostarczając pierwszych zdjęć tej planety. Na zdjęciach było widać m.in. niziny, które mogły uformować się albo wskutek działalności wulkanicznej, albo powstać w wyniku uderzenia w Merkurego dużego obiektu i pojawienia się roztopionego materiału. Następca Merkurego, pojazd Messenger, wysłany przez NASA w 2004 roku, dostarczył dowodów na działalność wulkaniczną. Mariner 10 i Messenger ujawniły wiele fascynujących informacji o Merkurym, jednak jeszcze więcej pozostało do zbadania. Tutaj na scenę wchodzi BepiColombo. Początkowo Europejska Agencja Kosmiczna (ESA) planowała wysłanie trzech pojazdów. Miały to być Mercury Planetery Orbiter (MPO), Mercury Magnetospheric Orbiter (MMO), które badałyby planetę z góry, oraz Mercury Sufrace Element (MSE), któy miał trafić na powierzchnię i przetrwać tam tydzień, prowadząc badania. Z powodu problemów budżetowych zrezygnowano z lądownika. Powstały za to MPO i MMO. Na pokładzie MPO znajduje się 11 instrumentów naukowych będących dziełem 35 zespołów ze Szwajcarii, Niemiec, Włoch, Wielkiej Brytani, Rosji, Finlandii, Szwecji, Austrii, Francji i USA. BepiColombo Laser Altimeter (BELA) i Spectrometers and Imagers for MPO BepiColombo Integrated Observatory System (SIMBIO-SYS) stworzą mapę geologiczną, zbadają skład powierzchni planety i określą jej wiek. Wraz z Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), Mercury Gamma-Ray and Neutron Spectrometer (MGNS) i Mercury Imaging X-Ray Spectrometer (MIXS) zidentyfikują kluczowe pierwiastki wchodzące w skład skał, zmierzą średnie temperatury na powierzchni i pozwolą na zweryfikowanie obecnych teorii na temat powstania i ewolucji planety. Instrumenty te poszukają złóż lodu, określą wpływ wulkanizmu na planetę oraz przeanalizują lotne związki z wysokich części atmosfery. Za analizę składu, struktury i sposobu formowania się eksosfery Merkurego będą odpowiedzialne BepiColombo’s Probing of Hermean Exosphere by Ultraviolet Spectroscopy (PHEBUS) id Search for Exosphere Refilling and Emitted Neutral Abundances (SERENA). Z kolei Solar Intensity X-Ray and Particles Spectrometer (SIXS) zbada wpływ wiatru słonecznego na erozję powierzchni planety. Zadaniem Italian Spring Accelerometer (ISA) and Mercury Orbiter Radioscience Experiment (MORE) jest zaś zbadanie pola grawitacyjnego planety i zrozumienie budowy jej jądra, płaszcza i skorupy. Na pokładzie MMO znajduje się też jedna część Mercury Magnetometer (MERMAG), który będzie badał pole magnetyczne. Druga część MERMAG znajduje się na zbudowanym przez Japońską Agencję Kosmiczną (JAXA) pojeździe MMO, którego nazwę zmieniono ostatnio na Mio. Mio ma na pokładzie pięć instrumentów. Poza MERMAG są to Mercury Sodium Atmosphere Spectral Imager (MSASI), który zbada sód w atmosferze, Mercury Dust Monitor (MDM), odpowiedzialny za monitorowanie pyłu i jego wpływu na powierzchnię. Mercury Plasma Particle Experiment (MPPE) będzie badał interakcję pola magnetycznego planety z wiatrem słonecznym, a Plasma Wave Investigation (PWI) jest odpowiedzialny za badanie pól elektrycznych, magnetycznych, poszukiwanie zórz i pasów radiacyjnych. Podróż BepiColombo do Merkurego potrwa 7 lat. Misja zostanie wystrzelona z Gujany Francuskiej na pokładzie rakiety Ariane 5, a sześciotygodniowe okienko startowe otwiera się dzisiaj. Po odłączeniu się od rakiety nośnej pojazd będzie napędzany przez brytyjski Mercury Transport Module (MTM), który składa się z czterech silników jonowo-ksenonowych, 24 silników chemicznych i dwóch paneli słonecznych. Podróż do Merkurego wymaga, ze względu na duże oddziaływanie grawitacyjne Słońca, więcej energii niż opuszczenie Układu Słonecznego. Ponadto prędkość orbitalna Merkurego jest o 60% większa od prędkości Ziemi, przez co konieczne są znaczne zmiany prędkości BepiColombo i związane z tym zużycie dużej ilości paliwa. Początkowo BepiColombo wejdzie na orbitę podobną do orbity ziemskiej. Wykona 1,5 orbity wokół Słońca, a w kwietniu 2020 roku powróci w pobliże Ziemi i skorzysta z asysty grawitacyjnej naszej planety. W październiku 2020 i sierpniu 2021 zliży się do Wenus, dzięki czemu zmniejszy swój peryhelium do podobnego jaki ma Merkury. Manewry będą tak wymagające, że zużyje na nie połowę paliwa. Pomiędzy październikiem 2021 a styczniem 2025 BepiColombo wykona sześć przelotów w pobliżu Merkurego. W końcu w grudniu 2025 roku wejdzie na orbitę okołobiegunową. Po oddzieleniu się MTM dojdzie do oddzielania się Mio, a trzy miesiące później oba pojazdy rozpoczną badania naukowe. MPO zajmie orbitę, której wysokość nad powierzchnią planety będzie wahała się od 480 do 1500 kilometrów. Okrążenie orbity będzie trwało 2,3 godziny. Mio wejdzie na wysoce eliptyczną orbitę przebiegającą w odległości od 590 do 11 640 kilometrów od powierzchni planety. Będzie ją przebywał w ciągu 9,3 godziny. Misja BepiColombo ma potrwać do maja 2027 roku, ale jest wysoce prawdopodobne, że zostanie wydłużona o co najmniej rok. « powrót do artykułu
  7. Naukowcy planują badania, które wyjaśnią dziwną chorobę występującą u wszystkich osób przebywających na Księżycu. Harrison Schmitt, Amerykanin, który jako 12. stanął na Srebrnym Globie, nazwał ją księżycowym "katarem siennym". Objawy, takie jak kichanie i zatkany nos, utrzymują się czasem przez kilka dni. Jak na razie pytań jest więcej niż odpowiedzi. Mimo że badania pokazywały, że przy długiej ekspozycji symulowana gleba księżycowa może uszkadzać komórki płuc i mózgu, nadal nie wiemy, jak bardzo niebezpieczny jest ten pył - podkreśla Kim Prisk z Uniwersytetu Kalifornijskiego w San Diego, który jest jednym z 12 naukowców z zespołu Europejskiej Agencji Kosmicznej (ESA). Z myślą o przyszłych misjach, kwestię tę trzeba dokładnie zbadać. Pył księżycowy jest wysoce ścierny; niszczy np. warstwy obuwia astronautów. W glebie księżycowej występują krzemiany, a skądinąd wiadomo, że w wyniku wdychania pyłu krzemionki krystalicznej górnicy na Ziemi cierpią na tzw. pylicę krzemową (silicosis). Ponieważ grawitacja na Księżycu to tylko 1/6 przyciągania ziemskiego, drobne cząstki są dłużej zawieszone i mogą głębiej penetrować płuca. Cząstki 50-krotnie mniejsze od [średnicy] ludzkiego włosa mogą miesiącami "wałęsać się" po płucach. Im dłużej tam przebywają, tym większe ryzyko toksycznego oddziaływania - tłumaczy Prisk. Księżycowy pył jest nie tylko ostry/niewygładzony przez erozję, ale i naładowany elektrostatycznie (dzieje się tak przez cienką atmosferę i stałe oddziaływanie promieniowania słonecznego). Wskutek tego pył unosi się nad powierzchnią, co zwiększa prawdopodobieństwo, że dostanie się do ekwipunku i ludzkich płuc. By przetestować sprzęt i zachowanie pyłu księżycowego, ESA wykorzysta symulowany pył księżycowy w postaci próbek pozyskanych z regionu wulkanicznego w Niemczech. Uzyskanie "godnego naśladowcy" nie jest jednak wcale łatwe. Musimy zemleć materiał źródłowy, a to oznacza, że usuniemy ostre krawędzie - wyjaśnia Erin Tranfield, biolog i ekspertka od toksyczności pyłu. « powrót do artykułu
×
×
  • Dodaj nową pozycję...