-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Gdy satelita się psuje, staje się bezużytecznym śmieciem krążącym po orbicie, który zagraża innym satelitom. W końcu spada w kierunku Ziemi i płonie w atmosferze.
Profesor Ou Ma i jego zespół z University of Cincinnati pracują nad siecią robotów, które wspólnie będą naprawiały i tankowały satelity. Ma mówi, że milion rzeczy może pójść nie tak po wystrzeleniu satelity. A my nie jesteśmy w stanie zaradzić większości z nich. zatem kosztujące miliony dolarów urządzenia bezużytecznie latają nad naszymi głowami, gdyż uległy awarii lub skończyło im się paliwo.
Najbardziej znaną kosmiczną awarią była ta, która dotknęła Teleskop Kosmiczny Hubble'a. Jednak teleskop był projektowany z myślą o serwisowaniu, więc wysłani w promie kosmicznym astronauci dokonali odpowiednich napraw. Jednak wysyłanie ludzi za każdym razem, gdy zepsuje się satelita, jest niezwykle kosztowne. Dlatego też profesor Ma, który pracował m.in. przy projektowanie robotycznego ramienia dla promów kosmicznych i Międzynarodowej Stacji Kosmicznej, chce stworzyć satelity, które będą dokowały do innych satelitów i je naprawiały.
Problemem nie są zresztą tylko awarie. Większość satelitów przestaje działać, bo skończyło im się paliwo. Odsyłamy na emeryturę sprawne satelity, bo wyczerpało im się paliwo, mówi John Lymer z firmy Maxar. NASA chce w 2022 roku wystrzelić na orbitę satelitę zdolnego do tankowania innych satelitów należących do amerykańskiego rządu. Projekt Restore-L ma być testem dla pomysłu automatycznej naprawy satelitów na orbicie.
W laboratorium Ma trwają intensywne prace nad systemami nawigacji satelitów, które miałyby naprawiać i tankować inne satelity. To niezwykle ważna kwestia, gdyż zderzenie w kosmosie spowoduje, że satelity zaczną poruszać się w sposób niekontrolowany. Do tego może bardzo łatwo dojść, gdyż nic nie hamuje satelitów. Gdy satelita zacznie się niekontrolowanie obracać, może tak poruszać się bez końca, mówi Ma.
Ma i jego zespół wykorzystują zaawansowane narzędzia do symulacji zachowania satelitów na orbicie. Przechwycenie czegoś w przestrzeni kosmicznej jestnaprawdę trudne. A złapanie czegoś, co się obraca jest jeszcze trudniejsze. Trzeba bardzo ostrożnie przewidywać ruch i wszystko precyzyjnie kontrolować, by uspokoić takiego satelitę i go delikatnie przechwycić, mów Ma.
Z jednej więc strony grupa Ma prowadzi badania nad samym przechwytywaniem satelitów, w tym również takich, które poruszają się w sposób niekontrolowany, z drugiej zaś, rozwija technologie ich naprawy. W laboratorium działa kilka robotycznych ramion, z których każde jest wyposażone w siedem stawów, co daje im pełną swobodę ruchu. Ma chciałby, by w przyszłości powstały satelity serwisowe zdolne do wykonywania różnego rodzaju prac serwisowych. Dodatkowo roboty takie powinny mieć możliwość działania w grupie i wspólnego wykonywania najbardziej skomplikowanych zadań.
W ramach swoich ostatnich prac naukowcy dali robotom zadanie przeciągnięcie przedmiotu na wskazane miejsce. Każdy z robotów kontrolował jeden sznurek, do którego umocowany był przedmiot, zatem jego przeciągnięcie wymagało współpracy. Dzięki algorytmom logiki rozmytej udało się przeciągnąć przedmiot na konkretne miejsce zarówno za pomocą trzech jak i pięciu robotów. Przy okazji okazało się, że grupa pięciu robotów jest w stanie wykonać zadanie nawet, gdy jeden z nich ulegnie awarii. To bardzo ważne w dużych grupach robotów, gdy możliwości jednego z nich okażą się mniejsze niż innych, stwierdzili uczeni.
Profesor Ma zauważa, że przemysł kosmiczny jest coraz bardziej zainteresowany serwisowaniem satelitów. Przyznaje, że obecnie technologia jest zbyt mało zaawansowana, jednak w ciągu 5–10 lat będzie ona na tyle dojrzała, że z pewnością powstaną przedsiębiorstwa, które zajmą się świadczeniem takich usług. My nie pracujemy nad całą misją. Tworzymy jedynie technologię dla takich działań. Gdy już będzie gotowa NASA lub jakaś prywatna firma się nią zainteresują i na jej podstawie zbudują satelity, mówi Ma.
Podobnego zdania jest Gordon Roesler, były dyrektor w DARPA (U.S. Defense Advanced Research Projects Agency). W żadnej innej dziedzinie nie robi się tak, że buduje się urządzenie warte pół miliarda czy miliard dolarów i nigdy się go nie dogląda, mówi.
Specjaliści dodają, że już w najbliższej przyszłości właściciele satelitów będą musieli pomyśleć o umożliwieniu ich serwisowania. Obecnie wiele urządzeń jest tak delikatnych, że nie można nawet myśleć o ich przechwyceniu bez ryzyka uszkodzenia. Poza wzmocnieniem satelitów potrzebny będzie też jakiś rodzaj drzwi serwisowych, dających dostęp do ich wnętrza.
Czasu na takie działania jest coraz mniej. Z każdym wystrzelonym i każdym nieczynnym satelitą niska orbita Ziemi jest coraz bliżej efektu Kesslera. To opracowana przez Donalda Kesslera teoria mówiąca, że z czasem zderzenia satelitów między sobą usieją orbitę tak olbrzymią liczbą szczątków, iż zagrozi to kolejnym satelitom. Musimy pamiętać, że zderzenie satelitów powoduje powstanie olbrzymiej liczby odpadków poruszających się z prędkościami przekraczającymi 20 000 km/h.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Miłośnicy selfie mają kolejny sposób na pokazanie się znajomym. Tym razem mogą użyć przy tym najdłuższego kija do selfie i wykonać swoje zdjęcie... z kosmosu. Pomoże im w tym witryna Spelfie.com i krążące na orbicie satelity.
Pomysł na nowatorskie selfie jest niezwykle interesujący, a użyte do tego narzędzia zostały zaprezentowane w wyemitowanym przed kilkoma dniami programie dokumentalnym. Opowiadał on o prowadzonej na Bali kampanii na rzecz ochrony środowiska. Grupa ludzi ułożyła na plaży duży napis „Act Now”, a przelatujący nad ich głowami satelita wykonał zdjęcia. Zostały one skoordynowane z selfie robionymi jednocześnie na ziemi. Firma, która uczestniczyła w przedsięwzięciu chce współpracować z organizacjami turystycznymi różnych państw, które są zainteresowane rozpropagowaniem piękna swoich krajobrazów. Jednak Spelifie.com to witryna, która kieruje swoją ofertę do osób indywidualnych biorących udział w imprezach masowych. Kosmiczne selfie zostało przetestowane podczas Glastonbury Festival, jednego z największych na świecie festiwali muzycznych.
Jeśli chcemy zrobić sobie selfie z kosmosu, musimy zainstalować aplikację i założyć konto na Spelfie.com oraz przesłać informacje, kiedy i w jakiej imprezie weźmiemy udział. Gdy już będziemy na miejscu otrzymamy dokładną informację z koordynatami, gdzie powinniśmy się ustawić i czasem, kiedy powinniśmy samodzielnie zrobić sobie selfie. W tym czasie satelita również wykona zdjęcie. Resztą zajmie się już Spelfie.com. Witryna jeszcze tego samego dnia dostarczy nam zarówno zdjęcie satelitarne z dokładnie zaznaczoną naszą lokalizacją oraz selfie, które sami sobie wykonaliśmy. Anthony Burr, rzecznik prasowy witryny, mówi, że w przyszłości możemy liczyć, iż kosmiczne selfie znajdzie się na naszym koncie w ciągu kilku minut.
Obecnie Spelfie.com oferuje „obsługę” konkretnych imprez masowych. Jednak już wkrótce ograniczenie to zniknie. Będziemy mogli poinformować Spelfie o tym, gdzie oraz kiedy będziemy i jeśli w tym czasie satelita będzie przelatywał nad naszą głową, wykona zdjęcie i nas na nim oznaczy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Satelita obserwacyjny Światowid i satelita-eksperyment KRAKsat, stworzone przez polską spółkę SatRevolution, zostały wypuszczone na orbitę z pokładu Międzynarodowej Stacji Kosmicznej. Z oboma nanosatelitami udało się już nawiązać dwustronne połączenie. Po półgodzinnej ciszy radiowej systemy Światowida zostały automatycznie uruchomiane, a następnie radioamatorzy z różnych części świata zaczęli odbierać od niego sygnały i przesyłać je do firmy. W środę 17 lipca udało się odebrać pierwsze zdjęcie kalibracyjne, które umożliwiło sprawdzenie działania i dostrojenie systemów satelity. Wszystkie informacje potrzebne do nawiązania połączenia z satelitami oraz oprogramowanie służące do dekodowania danych, zostały publicznie udostępnione przez spółkę.
Dzięki poprawionej predykcji położenia satelity jesteśmy coraz skuteczniejsi w nawiązywaniu kontaktu, czyli wysyłaniu i odbieraniu sygnału z urządzenia. Światowid został wypchnięty z ISS 3 lipca i jeszcze tego samego dnia nawiązaliśmy z nim dwustronne połączenie, więc podstawowa część misji zakończyła się sukcesem. Cała akcja silnie zaktywizowała też społeczność radioamatorów, którzy razem z nami przeżywali te fantastyczne emocje i dzielili się sygnałami ze Światowida. By pozyskać zdjęcia w najwyższej jakości, musimy mieć pewność, że systemy są odpowiednio skalibrowane. Udało nam się również nawiązać łączność z KRAKsatem. Możliwe było to dzięki współpracy KRAKsat Space Systems i SatRevolution z Przemysłowym Instytutem Automatyki i Pomiarów PIAP oraz z grupą doświadczonych krótkofalowców radioamatorów – komentuje Grzegorz Zwoliński, Prezes SatRevolution.
Przywiezione na statku Cygnus N-11 nanosatelity, trafiły na ISS 19 kwietnia i spędziły tam ponad dwa miesiące, oczekując na przeładunek sprzętu i wypuszczenie z pokładu. Światowid to pierwszy polski satelita obserwacyjny Ziemi i technologia demonstracyjna spółki SatRevolution. Został stworzony na podstawie autorskiej platformy NanoBus – konstrukcji nośnej z zestawem podsystemów niezbędnych do funkcjonowania nanosatelity w kosmosie. Rozwiązanie to stanowi podstawę konstrukcji satelitów w standardzie CubeSat, czyli miniaturowego urządzenia, stosowanego w edukacji czy badaniach kosmosu.
To właśnie Światowid ma stanowić podwaliny pod konstelację satelitów, służącą do obserwacji Ziemi w czasie rzeczywistym REC (Real-time Earth Observation Constellation). Na podstawie doświadczenia zebranego podczas jego misji powstanie satelita obserwacyjny ScopeSat, o znacznie lepszych parametrach – będzie w stanie wykonywać zdjęcia Ziemi z rozdzielczością 0,5 m.
Razem ze Światowidem na orbitę wyniesiony został satelita KRAKsat, eksperyment naukowy. Jako pierwszy na świecie, do sterowania swoim położeniem będzie wykorzystywał ciecz magnetyczną. Mechanizm, który ma to umożliwiać – ferrofluidowe koło zamachowe – został zaprojektowany i zbudowany przez studentów AGH. Eksperci SatRevolution odpowiadali za projekt i wykonanie całej konstrukcji satelity, włącznie ze wszystkimi niezbędnymi podsystemami.
Obecnie spółka współpracuje z Centrum Badań Kosmicznych Polskiej Akademii Nauk nad realizacją autorskiego modułu optycznego.- Ukończony mamy już jeden etap, pozostały nam jeszcze dwa. Planujemy wyniesienie na orbitę prototypowego nanosatelity obserwacyjnego ScopeSat, bazowego elementu konstelacji REC w 2021 roku. W kolejnym powstanie pierwsza wersja konstelacji złożona z 16 satelitów. W 2023 r. na orbitę wystrzelonych będzie już 66 satelitów, wyposażonych w rozkładany moduł optyczny DeploScope – dodaje Grzegorz Zwoliński.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zderzenia jąder ołowiu zachodzą w ekstremalnych warunkach fizycznych. Ich przebieg można opisać za pomocą modelu zakładającego, że przekształcająca się, ekstremalnie gorąca materia – plazma kwarkowo-gluonowa – płynie w postaci setek smug. Dotychczas „ogniste smugi” wydawały się konstrukcjami czysto teoretycznymi. Jednak najnowsza analiza zderzeń pojedynczych protonów wzmacnia tezę, że odpowiada im rzeczywiste zjawisko.
W 2017 roku fizycy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie przedstawili przemawiający do wyobraźni model zjawisk zachodzących w trakcie zderzeń jąder ołowiu przy wysokich energiach. W modelu założono, że powstająca w zderzeniach egzotyczna materia, plazma kwarkowo-gluonowa, oddala się od miejsca kolizji w formie licznych smug, rozciągniętych wzdłuż pierwotnego kierunku ruchu jąder. Smugi te powinny poruszać się tym szybciej, im bardziej są odległe od osi zderzenia. Obecnie badacze zastosowali model „smug ognistych” do znacznie prostszych zderzeń proton-proton. Gdy porównali swoje przewidywania z danymi zebranymi w eksperymentach w europejskim ośrodku badań jądrowych CERN, czekała ich nie lada niespodzianka.
Jądra ołowiu zawierają ponad dwieście protonów i neutronów. Gdy dwa tak duże obiekty się zderzają, przy odpowiednio wielkich energiach powstaje płynna mieszanina kwarków i gluonów (cząstek w normalnych warunkach zlepiających kwarki w protony i neutrony). Plazma kwarkowogluonowa błyskawicznie ekspanduje i równocześnie się wychładza. W rezultacie istnieje tak krótko i w tak małym obszarze przestrzeni (o rozmiarach zaledwie setek milionowych części jednej miliardowej metra), że nie potrafimy jej bezpośrednio obserwować. Na dodatek interakcje między cząstkami plazmy są zdominowane przez oddziaływania silne i są tak skomplikowane, że z ich opisem współczesna fizyka po prostu sobie nie radzi. Ślady plazmy kwarkowo-gluonowej widać tylko pośrednio, w cząstkach wybiegających z miejsca zderzenia. Teoria przewiduje bowiem, że jeśli plazma kwarkowo-gluonowa rzeczywiście się wytworzyła, detektory powinny rejestrować wyraźnie większą liczbę cząstek dziwnych (a więc takich, które zawierają kwarki dziwne s).
Zderzenia proton-proton w akceleratorach w CERN produkują mało cząstek dziwnych. Powszechnie przyjmuje się więc, że w ich trakcie plazma kwarkowo-gluonowa nie powstaje. Uwzględniliśmy ten fakt w naszym modelu smug ognistych, po czym skonfrontowaliśmy jego przewidywania z danymi z eksperymentu NA49 na akceleratorze SPS. Zgodność była zdumiewająco dobra. Można więc powiedzieć, że teraz 'zobaczyliśmy' smugę ognistą w jakościowo innych warunkach fizycznych, tam, gdzie w ogóle się jej nie spodziewaliśmy!, tłumaczy dr hab. Andrzej Rybicki (IFJ PAN), jeden z autorów publikacji w czasopiśmie Physical Review C.
Kolizję dwóch jąder ołowiu musieliśmy modelować jako złożenie kilkuset smug. W takich warunkach trudno powiedzieć cokolwiek o własnościach pojedynczej smugi. Jednak gdy z modelu wyekstrahowaliśmy rozkład pospieszności, czyli relatywistycznej prędkości cząstek produkowanych przez pojedynczą smugę, okazało się, że jej kształt bardzo dobrze opisuje prawdziwe dane z pomiarów produkcji cząstek w zderzeniach proton-proton!, precyzuje mgr Mirek Kiełbowicz, doktorant IFJ PAN.
Aby wykresy, otrzymane za pomocą modelu smug ognistych zbudowanego dla zderzeń jąder ołowiu, zgadzały się z danymi eksperymentalnymi dla zderzeń proton-proton, należało je przeskalować o czynnik 0,748. Krakowscy badacze wykazali, że parametr ten nie jest swobodny. Pojawia się on po uwzględnieniu w bilansie energetycznym zmian związanych z różną produkcją cząstek dziwnych i można go odtworzyć z danych eksperymentalnych. Był to kolejny silny argument wzmacniający fizyczną poprawność modelu.
Pracuję nad modelem smug ognistych w ramach mojej pracy magisterskiej, więc nie zdziwiło mnie, że opisuje on dane ze zderzeń jądro-jądro w sporym zakresie energii. Kiedy jednak zobaczyłem, że wyekstrahowana przez nas funkcja fragmentacji tak dobrze zgadza się z danymi ze zderzeń proton-proton, trudno było ukryć zaskoczenie, wspomina Łukasz Rozpłochowski, student Uniwersytetu Jagiellońskiego współpracujący z grupą z IFJ PAN.
Materia powstająca w zderzeniach proton-proton, chłodniejsza i jakościowo inna niż plazma kwarkowo-gluonowa, wydaje się więc zachowywać jak pojedyncza ognista smuga. Jej pewne własności – takie jak prędkości emitowanych cząstek czy sposoby ich rozpadów – z jakiegoś powodu są zdumiewająco podobne do własności ognistych smug plazmy kwarkowo-gluonowej. A ponieważ plazma kwarkowo-gluonowa tworzy się przy większych energiach i w zderzeniach obiektów kwantowych o dużej złożoności, uprawnione staje się stwierdzenie, że to ona dziedziczy niektóre cechy materii formującej ogniste smugi w zderzeniach proton-proton.
Gdy opisywaliśmy zderzenia jądro-jądro, ogniste smugi były dla nas jedynie pewnymi abstrakcyjnymi konstrukcjami, czymś czysto teoretycznym. Nie wnikaliśmy w ich fizyczną naturę, w to, czym mogą być w rzeczywistości. Przeżyliśmy prawdziwy wstrząs, gdy zestawiając dane eksperymentalne z naszym modelem odkryliśmy, że to, co powstaje w zderzeniach proton-proton, zachowuje się dokładnie tak jak nasza pojedyncza ognista smuga, podsumowuje dr Rybicki.
Wyniki najnowszej analizy, przeprowadzonej przez krakowskich fizyków w ramach grantu SONATA BIS nr 2014/14/E/ST2/00018 Narodowego Centrum Nauki, wzmacniają zatem przypuszczenie, że ognistym smugom, wedle teorii formującym się w zderzeniach proton-proton i jądro-jądro, odpowiadają rzeczywiste procesy fizyczne zachodzące w przepływach ekstremalnie gorącej materii kwantowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jesteśmy świadkami narodzin nowej gałęzi przemysłu, serwisowania satelitów na orbicie. Obecnie satelita, któremu skończyło się paliwo, nie jest w stanie utrzymać swojej orbity i staje się bezużytecznym odpadem, nawet jeśli wszystkie jego urządzenia są sprawne.
To wyrzucanie w błoto setek milionów dolarów, powiedział Al Tadros, wiceprezes firmy SSL. Wystąpił on niedawno w Waszyngtonie przed głównymi graczami w dziedzinie serwisowania i naprawy satelitów na orbicie. Firmy takie jak SSL mają nadzieję, że właścicielom satelitów bardziej będzie opłacało się ich serwisowanie niż wystrzeliwanie nowego sprzętu.
W 2021 roku SSL chce wystrzelić, w ramach swojego programu Robotic Servicing of Geosynchronous Satellites (RSGS) pojazd, który będzie w stanie obsłużyć do ponad 30 satelitów znajdujących się na odległej orbicie geostacjonarnej. Obecnie znajduje się tam około 500 działających satelitów, głównie telekomunikacyjnych. Pojazd ma być w stanie dokonać inspekcji satelity, zatankować go, a może nawet naprawić czy wymienić podzespoły i ponownie umieścić go na właściwej orbicie. To olbrzymia szansa z finansowego punktu widzenia, mówi Tadros.
Jeszcze inny pomysł ma firma Space Logistics, która podpisała już umowę z Intelsatem, zarządzającym 50 satelitami na orbicie stacjonarnej. Space Logistics, który należy do Northropa Grummana, jest autorem prostego pojazdu, który będzie dokował do satelity, umieszczał go na właściwej orbicie i pozostawał z nim, wykorzystując własny silnik do utrzymania satelity w odpowiedniej pozycji. Pierwszy taki pojazd ma rozpocząć pracę w przyszłym roku.
Serwisowanie satelitów to jednocześnie sposób na, przynajmniej częściowe, poradzenie sobie z problemem odpadów na orbicie okołoziemskiej. A jest ona coraz bardziej zaśmiecona. Amerykańskie wojsko, które monitoruje to, co znajduje się na orbicie, mówi, że wśród 23 000 obiektów jedynie 1900 to działające satelity. Poza nimi wokół ziemi krąży (z prędkością od 20 km/h do 30 000 km/h) niemal 3000 niedziałających satelitów, 2000 rakiet oraz tysiące małych fragmentów, z których większość powstała wskutek celowej eksplozji chińskiego satelity w 2007 roku oraz zderzenia satelity Iridium ze starym rosyjskim satelitą w 2009 roku.
W ciągu ostatnich 5 lat liczba satelitów na orbicie wzrosła o 50%. Problem odpadów staje się więc coraz poważniejszy. Zaczynają one zagrażać działającym satelitom oraz Międzynarodowej Stacji Kosmicznej. Pojawiają się więc kolejne pomysły na poradzenie sobie ze śmietniskiem wokół Ziemi. Od 2008 roku Francja wymaga od swoich operatorów satelitów, by programowali je tak, żeby w ciągu 25 lat urządzenia wchodziły w atmosferę Ziemi i w niej płonęły. Te zaś, które znajdują się na orbicie geostacjonarnej mają być usuwane na „orbitę cmentarną” znajdującą się 300 kilometrów dalej. Powstają także prywatne firmy, które chcą zająć się sprzątaniem orbity. Na razie jednak nie mają one klientów.
Zaś w USA toczy się debata na temat lepszego uregulowania kwestii korzystania z przestrzeni kosmicznej. Nie chcemy tam Dzikiego Zachodu, mówi Fred Kennedy, dyrektor Biura Technologii Taktycznych w DARPA. Zauważa on, że w przestrzeni kosmicznej znajduje się obecnie ponad 800 amerykańskich satelitów, zatem to USA powinny wystąpić z inicjatywą ustalenia reguł korzystania z orbity i jej sprzątania.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.