Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Polskie satelity wypuszczone z Międzynarodowej Stacji Kosmicznej

Recommended Posts

Satelita obserwacyjny Światowid i satelita-eksperyment KRAKsat, stworzone przez polską spółkę SatRevolution, zostały wypuszczone na orbitę z pokładu Międzynarodowej Stacji Kosmicznej. Z oboma nanosatelitami udało się już nawiązać dwustronne połączenie. Po półgodzinnej ciszy radiowej systemy Światowida zostały automatycznie uruchomiane, a następnie radioamatorzy z różnych części świata zaczęli odbierać od niego sygnały i przesyłać je do firmy. W środę 17 lipca udało się odebrać pierwsze zdjęcie kalibracyjne, które umożliwiło sprawdzenie działania i dostrojenie systemów satelity. Wszystkie informacje potrzebne do nawiązania połączenia z satelitami oraz oprogramowanie służące do dekodowania danych, zostały publicznie udostępnione przez spółkę.

Dzięki poprawionej predykcji położenia satelity jesteśmy coraz skuteczniejsi w nawiązywaniu kontaktu, czyli wysyłaniu i odbieraniu sygnału z urządzenia. Światowid został wypchnięty z ISS 3 lipca i jeszcze tego samego dnia nawiązaliśmy z nim dwustronne połączenie, więc podstawowa część misji zakończyła się sukcesem. Cała akcja silnie zaktywizowała też społeczność radioamatorów, którzy razem z nami przeżywali te fantastyczne emocje i dzielili się sygnałami ze Światowida. By pozyskać zdjęcia w najwyższej jakości, musimy mieć pewność, że systemy są odpowiednio skalibrowane. Udało nam się również nawiązać łączność z KRAKsatem. Możliwe było to dzięki współpracy KRAKsat Space Systems i SatRevolution z Przemysłowym Instytutem Automatyki i Pomiarów PIAP oraz z grupą doświadczonych krótkofalowców radioamatorów – komentuje Grzegorz Zwoliński, Prezes SatRevolution.

Przywiezione na statku Cygnus N-11 nanosatelity, trafiły na ISS 19 kwietnia i spędziły tam ponad dwa miesiące, oczekując na przeładunek sprzętu i wypuszczenie z pokładu. Światowid to pierwszy polski satelita obserwacyjny Ziemi i technologia demonstracyjna spółki SatRevolution. Został stworzony na podstawie autorskiej platformy NanoBus – konstrukcji nośnej z zestawem podsystemów niezbędnych do funkcjonowania nanosatelity w kosmosie. Rozwiązanie to stanowi podstawę konstrukcji satelitów w standardzie CubeSat, czyli miniaturowego urządzenia, stosowanego w edukacji czy badaniach kosmosu.

To właśnie Światowid ma stanowić podwaliny pod konstelację satelitów, służącą do obserwacji Ziemi w czasie rzeczywistym REC (Real-time Earth Observation Constellation). Na podstawie doświadczenia zebranego podczas jego misji powstanie satelita obserwacyjny ScopeSat, o znacznie lepszych parametrach – będzie w stanie wykonywać zdjęcia Ziemi z rozdzielczością 0,5 m.

Razem ze Światowidem na orbitę wyniesiony został satelita KRAKsat, eksperyment naukowy. Jako pierwszy na świecie, do sterowania swoim położeniem będzie wykorzystywał ciecz magnetyczną. Mechanizm, który ma to umożliwiać – ferrofluidowe koło zamachowe – został zaprojektowany i zbudowany przez studentów AGH. Eksperci SatRevolution odpowiadali za projekt i wykonanie całej konstrukcji satelity, włącznie ze wszystkimi niezbędnymi podsystemami.

Obecnie spółka współpracuje z Centrum Badań Kosmicznych Polskiej Akademii Nauk nad realizacją autorskiego modułu optycznego.- Ukończony mamy już jeden etap, pozostały nam jeszcze dwa. Planujemy wyniesienie na orbitę prototypowego nanosatelity obserwacyjnego ScopeSat, bazowego elementu konstelacji REC w 2021 roku. W kolejnym powstanie pierwsza wersja konstelacji złożona z 16 satelitów. W 2023 r. na orbitę wystrzelonych będzie już 66 satelitów, wyposażonych w rozkładany moduł optyczny DeploScope – dodaje Grzegorz Zwoliński.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Amerykańskim fizykom udało się uzyskać kondensat Bosego-Einsteina na pokładzie Międzynarodowej Stacji Kosmicznej. Co prawda tamtejsze laboratorium nie osiąga jeszcze tak niskich temperatur, jak instalacje na Ziemi, jednak w przyszłości ISS może stać się idealnym miejscem do testowania kwantowo-mechanicznych grawimetrów i prowadzenia najbardziej precyzyjnych testów zasady równoważności.
      Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę.
      Kondensat uzyskuje się zamykając gaz złożony z atomów bozonowych w pułapce magnetycznej i chłodząc go za pomocą lasera. Powstaje kondensat, który jest uwalniany z pułapki, by mógł zachowywać się w sposób naturalny i badany. Eksperymenty takie są jednak poważnie zakłócane przez grawitację. Powoduje ona, że po uwolnieniu z pułapki atomy błyskawicznie opadają i uderzają o podłoże. Dlatego też naukowcy próbują różnych rozwiązań – polegających na zapewnieniu atomom jak najdłuższego swobodnego spadku – by wydłużyć czas pomiędzy uzyskaniem kondensatu a opadnięciem atomów i kontaktem z podłożem. W tym celu kondensaty zrzuca się z wież czy umieszcza na pokładzie samolotów czy rakiet w locie parabolicznym.
      Najlepszym miejscem do tego typu eksperymentów byłyby więc warunki jak najmniejszej grawitacji. To nie tylko wydłużyłoby czas badania kondensatu, ale pozwoliłoby stopniowo osłabiać pola magnetyczne pułapki, dzięki czemu atomy powoli by się rozprzestrzeniały i chłodziły do jeszcze niższych temperatur.
      Nowe badania zostały przeprowadzone za pomocą Cold Atom Lab (CAL). To laboratorium zostało wyniesione na ISS w 2018 roku i znajduje się na pokładzie amerykańskiego modułu Destiny. Zbudowane kosztem 70 milionów dolarów zdalnie sterowane urządzenie ma objętość zaledwie 0,4 m3, jednak zawiera lasery, magnesy i inne urządzenia potrzebne do uwięzienia, schłodzenia i kontrolowania gazu. Atomy są początkowo przechowywane w centrum komory próżniowej, później transportowane są do "atomowego chipa", na szczycie komory. Układ ten wykorzystuje fale radiowe do odrzucenia cieplejszych atomów, pozostawiając tylko te, których temperatura wynosi mniej niż miliardowa część kelwina.
      Robert Thompson, David Aveline i ich koledzy z Jet Propulsion Laboratory wykorzystali CAL do uzyskania kondensatu Bosego-Einsteina z atomów rubidu-87. Kondensat był obecny przez 1,18 sekundy i zauważono w nim wiele odmiennych charakterystyk od analogicznego kondensatu uzyskiwanego na Ziemi. Najważniejszym spostrzeżeniem było stwierdzenie, że niektóre z atomów rubidu pozostały w oddaleniui odl kondensatu i utworzyły wokół niego halo. Atomy te były utrzymywane za pomocą efektu Zeemana. W warunkach ziemskich opadają one na dno pułapki.
      Mimo, że CAL to niewielkie zdalnie sterowane urządzenie, to uzyskane w nim kondensaty już teraz dorównują tym najlepszym kondensatom uzyskiwanym w ziemskich warunkach. Jak zauważa Bryntle Barrett z francuskiego Institut d’Optique d’Aquitaine, olbrzymią zaletą eksperymentów na orbicie jest fakt, że potencjalnie można tam zapewnić całe lata swobodnego spadku, co pozwoli naukowcom na ciągłe udoskonalanie parametrów eksperymentów. Dlatego też uczony uważa, że uzyskanie kondensatu Bosego-Einsteina na ISS to znaczący krok w kierunku prowadzenia w przestrzeni kosmicznej wysoce precyzyjnych eksperymentów z kwantowymi gazami.
      Specjaliści już mówią o kilku różnych rodzajach takich eksperymentów. Jednak najbardziej obiecującymi z nich będą badania nad atomowymi interferometrami. Takie interferometry pozwoliłyby nie tylko na badanie zjawiska swobodnego spadku, ale posłużyłyby do niezwykle precyzyjnego monitorowania środowiska czy poszukiwania minerałów z przestrzeni kosmicznej.
      Barrett mówi, że już teraz w środowisku naukowym pojawiły się propozycje wystrzelenia dedykowanego satelity, który wykorzystywałby kondensat Bosego-Eisteina do badania zjawiska grawitacji. Taki satelita byłby wolny od wibracji obecnych na Międzynarodowej Stacji Kosmicznej. W tej dekadzie będziemy świadkami realizacji części z tych ekscytujących propozycji, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr Kathryn Dwyer Sullivan, amerykańska geolog i była astronautka NASA, została pierwszą kobietą, która zeszła na dno Głębi Challengera, czyli najgłębiej położonego miejsca w Rowie Mariańskim. Dokonała tego podczas zeszłego weekendu na pokładzie pojazdu podwodnego DSV Limiting Factor. Jej pilotem był Victor Vescovo. O dokonaniach 68-letniej Sullivan poinformowała EYOS Expeditions, firma koordynująca logistykę misji.
      W 1984 r. Sullivan jako pierwsza Amerykanka wykonała spacer kosmiczny. Sullivan była uczestniczką trzech misji promów kosmicznych. W 1993 r. opuściła NASA i została głównym naukowcem Amerykańskiej Narodowej Służby Oceanicznej i Meteorologicznej (NOAA).
      Dr Sullivan i Victor L. Vescovo, badacz finansujący misję, spędzili u celu swojej podróży ok. 1,5 godziny. Po wykonaniu zdjęć rozpoczęło się ok. 4-godzinne wynurzanie.
      Po powrocie na pokład jednostki macierzystej DSSV Pressure Drop Sullivan i Vescovo zadzwonili na Międzynarodową Stację Kosmiczną (MSK). Dla oceanografa i astronauty w jednej osobie był to niesamowity dzień, doświadczenie zdarzające się tylko raz w życiu; ostatecznie rzadko kiedy podziwia się księżycowy krajobraz Głębi Challengera i wymienia z kolegami z MSK uwagami na temat naszego sprzętu wielokrotnego użytku z przestrzeni kosmicznej i oceanicznej.
      We wpisie na Twitterze Vescovo pogratulował Sullivan zostania pierwszą kobietą na dnie oceanu. Jak podkreślono w relacji prasowej EYOS Expeditions, Sullivan jest pierwszym człowiekiem, który był zarówno w przestrzeni kosmicznej, jak i na pełnej głębokości oceanu.
      Wyprodukowany przez florydzką firmę Triton Submarines Limiting Factor to obecnie jedyny pojazd podwodny, który może dotrzeć do Głębi Challengera.
      Warto przypomnieć, że Vescovo zorganizował ekspedycję Five Deeps, która polegała na osiągnięciu najgłębszych punktów wszystkich ziemskich oceanów. Zaczęła się ona od Atlantyku (grudzień 2018), a zakończyła w sierpniu 2019 r. na Oceanie Arktycznym. W zeszłym roku na przestrzeni 7 dni jego zespół 5-krotnie nurkował w Rowie Mariańskim. Wycieczka Victora z panią doktor jest jego 3. pobytem w Głębi Challengera.
      Sullivan ma wrócić do portu na Guam 15 czerwca.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rozpoczęła się historyczna misja kapsuły załogowej Crew Dragon. Start odbył się zgodnie z planem. Równie udane były poszczególne etapy lotu. Najpierw odrzucony został pierwszy stopień rakiety, który z powodzeniem wylądował na pokładzie oczekującej nań na Atlantyku platformy. Niedługo później doszło do oddzielenia się kapsuły załogowej od drugiego stopni rakiety.
      Do oddzielenia się pierwszego stopnia rakiety doszło 2 minuty 36 sekund po starcie. Osiem sekund później pracę rozpoczął silnik drugiego stopnia. W tym czasie pierwszy stopień opadał w kierunku Ziemi i 8 minut 52 sekundy po starcie na krótko uruchomił silniki hamujące. Pół minuty później zobaczyliśmy, że pierwszy stopień z powodzeniem wylądował na platformie. Wiadomość ta wyraźnie ucieszyła załogę Crew Dragona. W 12. minucie po starcie kapsuła załogowa oddzieliła się od drugiego stopnia rakiety i rozpoczęła samodzielną podróż w kierunku Międzynarodowej Stacji Kosmicznej. Podróż ta potrwa 19 godzin.
      Kolejny ważny etap podróży nastąpił 49 minut i 6 sekund po starcie, gdy po sprawdzeniu silników manewrowych zostały one uruchomione, by dopasować orbitę Dragona do orbity Międzynarodowej Stacji Kosmicznej. Za dziewięć godzin rozpocznie się cała seria manewrów, dzięki którym w ciągu kolejnych 6 godzin Dragon zbliży się do MSK.
      Jutro około godziny 15:02 czasu polskiego kapsuła zbliży się do 400-metrowej strefy bezpieczeństwa wokół Stacji. Aby w nią wlecieć musi uzyskać zgodę z kontroli misji. Jeśli zgoda taka zostanie wydana, około 10 minut później kapsuła podleci do Waypoint Zero znajdującego się 400 metrów pod ISS. Minie kolejnych 25 minut zanim kapsuła znajdzie się w Waypoint 1 w odległości 220 metrów i rozpocznie dopasowywanie swojej pozycji do modułu dokującego stacji. Stanie się to około godziny 15:37 czasu polskiego. Mniej więcej o godzinie 16:13 załoga powinna dostać ostateczną zgodę na dokowanie. Pięć minut później Dragon powinien znaleźć się w Waypoint 2, punkcie znajdującym się zaledwie 20 metrów od stacji. Tam poczeka przez 5 minut. O godzinie 16:28 kapsuła powinna zadokować do Międzynarodowej Stacji Kosmicznej.
      Przeprowadzenie udanego startu oznacza, że po raz pierwszy od 9 lat z terenu USA wystartowała załogowa misja kosmiczna. Oznacza też ponowne odzyskanie przez USA zdolności do samodzielnej organizacji załogowych lotów kosmicznych. To niezwykle ważny moment dla całego przemysłu kosmicznego, gdyż po raz pierwszy w historii prywatna firma wyniosła ludzi w kosmos we własnym pojeździe i przy użyciu własnej rakiety.
      Sukces misji oznacza, że SpaceX uzyska licencję na kosmiczne loty załogowe. To z kolei doda jej wiarygodności i firma Muska będzie mogła liczyć na kolejne zlecenia zarówno ze strony NASA, prywatnego przemysłu kosmicznego i – co bardzo prawdopodobne – agencji kosmicznych innych państw. Przemysł kosmiczny wchodzi w zupełnie nową fazę rozwoju. Tym bardziej, że na przyszły rok zapowiadany jest lot konkurencji SpaceX, czyli kapsuły Starliner firmy Boeing. Zatem od przyszłego roku możemy mieć na rynku dwie prywatne firmy oferujące załogowe loty kosmiczne.
      Najbardziej stracić może na tym rosyjski Roskosmos, który obecnie nie tylko wozi astronautów NASA, ale z jego usług korzystają też inne państwa. NASA z pewnością przestanie korzystać z usług Roskosmosu w takim zakresie jak obecnie, a biorąc pod uwagę fakt, że SpaceX ma zamiar zaoferować swoje usługi znacznie taniej, można spodziewać się, że Roskosmos straci wielu klientów. To zaś powinno wymusić na Rosji zreformowanie swojej agencji kosmicznej.
      Przypominamy, że teraz każdy może spróbować swoich sił na symulatorze dokowania Dragona do ISS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jak się okazuje slime, zwany przez polskie dzieci „glutem” czy „glutkiem”, może być nie tylko zabawką dla dzieci, ale również przedmiotem poważnych eksperymentów naukowych. Bardzo poważnych, bo prowadzonych na Międzynarodowej Stacji Kosmicznej. Latem ubiegłego roku stacja Nickelodeon wysłała na ISS około dwóch litrów gluta. Celem projektu Slime in Space było przede wszystkim stworzenie materiału edukacyjnego dla nauczycieli. Jednak z okazji postanowili skorzystać naukowcy specjalizujących się badaniu różnych materiałów.
      Inżynier Mark Weislogel z Pennsylvania State University mówi, że gdy dowiedział się o projekcie Nickelodeona, nie mógł przegapić takiej okazji. To tak unikatowa ciecz, że nie mogliśmy przegapić okazji do jej zbadania, mówi. Wraz ze swoją koleżanką, Rihaną Mungin, opracowali serię ośmiu eksperymentów, które miały zostać przeprowadzone na ISS.
      Nie zawsze zdarza się, byśmy w ramach swoich obowiązków na stacji kosmicznej mogli przez kilka godzin bawić się slimem, podczas gdy zespół naziemny mówi nam, byśmy przez strzykawkę opryskali slimem kolegę lub napełnili nim balon, mówi astronautka Christina Koch.
      Po co jednak wysyłać gluta w kosmos? Otóż dlatego, że to ciecz o lepkości 20 000 razy większej od wody. To zaś oznacza, że slime zachowuje się w warunkach mikrograwitacji w zupełnie niespodziewany sposób i pozwala nam lepiej zrozumieć jak ciecze o dużej lepkości zachowują się w przestrzeni kosmicznej. To zaś pozwoli na lepsze projektowanie systemów, które oryginalnie powstały w warunkach ziemskiej grawitacji. Jak wyjaśniają autorzy badań, bez grawitacji bąbelki w płynie nie unoszą się do góry, krople nie padają, więc cały sprzęt taki jak boilery, kondensatory, systemy nawadniania czy ekspresy do kawy, działają zupełnie inaczej.
      Co interesujące, na Ziemi definiujemy ciecz, jako coś, co przyjmuje kształt pojemnika, mówi Koch. Jednak w warunkach mikrograwitacji woda tworzy sferę. Musimy więc przemyśleć definicję materii w przestrzeni kosmicznej. Ten eksperyment wspaniale pokazuje nam, jak mikrograwitacja wpływa na nasze rozumienie rzeczy, szczególnie takich, które na Ziemi przyjmujemy za oczywiste, dodaje.
      Eksperymenty wykazały na przykład, że na stacji kosmicznej slime również tworzy sferę. W porównaniu z wodą dzieje się to bardzo szybko. Woda, przez swoją niższą lepkość, odkształca się jeszcze długo po tym, jak slime tworzy idealną sferę.
      Podczas innego eksperymentu wypełniano glutem balony, a następnie je przebijano. Astronauci spodziewali się eksplozji slime. Okazało się jednak, że po przebiciu balonu glut ledwo się przemieszczał, zachowując nadany kształt.
      Jeden z najbardziej interesujących eksperymentów polegał na użyciu slime'a i dwóch łopatek pokrytych warstwą hydrofobową. Astronauci ściskali gluta między łopatkami, a następnie z różną prędkością oddalai łopatki od siebie. Slime przyczepiał się do powierzchni obu łopatek. Gdy były one oddalane powoli, przez chwilę glut się rozciągał, a następnie pękał, pozostając przywarty do obu łopatek. Gdy zaś łopatki rozwierano szybko, slime tworzył znacznie dłuższy „most”, również pękał, ale rozrywał się na kilka kawałków, które tworzyły sfery pomiędzy łopatkami. Eksperyment ten dobrze obrazuje, dlaczego slime jest cieczą nieniutonowską. Narusza on bowiem niutonowskie prawo lepkości, które mówi, że lepkość cieczy nie zmienia się pod wpływem przyłożonej siły. Tymczasem tutaj widać, że w zależności od siły, slime reaguje inaczej.
      Jak zauważają eksperci, badania nad zachowaniem cieczy w warunkach mikrograwitacji mogą zostać wykorzystane np. do stworzenia systemów przemieszczania płynów bez pomocy pomp.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Szef NASA, Jim Bridenstine, potwierdził, że aktor Tom Cruise poleci na Międzynarodową Stację Kosmiczną, by nagrać tam ujęcia do nowego filmu. Obecnie nie wiadomo, kiedy miałaby się odbyć wyprawa, ani jaki będzie jej koszt.
      O samym filmie również niewiele wiemy. Niektórzy z komentatorów mówią, że chodzi o kolejny odcinek Mission: Impossible.
      Jednak serwis Deadline zapewnia, że nowy film nie będzie miał nic wspólnego z żadnym dotychczasowych. Nie wiadomo nawet, jakie studio ma go wyprodukować. Serwis donosi, że przy filmie mają współpracować Cruise, NASA i Space X. Ma być to obraz przygodowy. A jeśli wszystkie doniesienia się potwierdzą, będą to też pierwszy w historii film fabularny nagrywany w przestrzeni kosmicznej.
      Nie wiemy, jak długo Cruise miałby przebywać na ISS, jak będzie wyglądało filmowanie. Podróż na ISS nie jest prosta, gdyż stacja porusza się z dużą prędkością. Obecnie na stację można dostać się jedynie na pokładzie rosyjskiego Sojuza. W ostatnich latach czas samej podróży skrócono z 50 do 6 godzin.
      Cruise i jego ekipa (a prawdopodobnie jakaś ekipa z nim poleci), będą mogli wybrać się na już ISS na pokładzie amerykańskiego pojazdu, np. Crew Dragona firmy SpaceX. Zakładając, że lot będzie trwał tyle samo czasu co na pokładzie Sojuza, to i tak pobyt tam zajmie prawdopodobnie kilkanaście dni. Warto tutaj przypomnieć, że ISS jest przystosowana do pobytu 6 osób, chociaż przez krótki czas, podczas wymiany załóg, może tam mieszkać nawet 9 astronautów.
      Niektórzy wyliczają, że 2-tygodniowy pobyt na Stacji będzie kosztował około 500 000 USD. To niewielka kwota jak na możliwości Hollywood. Znacznie droższy będzie lot tam i z powrotem. Szacuje się, że za każdego astronautę SpaceX będzie wystawiała NASA rachunek w wysokości 55 milionów USD. Podróż aktora wraz z operatorem kamery, dźwiękowcem i reżyserem może kosztować około 220 milionów USD. A kwota ta nie uwzględnia kosztów treningu.
      Biorąc jednak pod uwagę olbrzymie koszty współczesnych filmów oraz zyski, jakie przynoszą Hollywood, dodatkowy wydatek 200 milionów dolarów na pierwszy film kręcony w kosmosie może okazać się świetną inwestycją.

      « powrót do artykułu
×
×
  • Create New...