Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Astronomowie z Caltech (California Institute of Technology) oraz brytyjskiego Durham University poinformowali, że udało im się zajrzeć tak daleko w głąb kosmosu, jak nikomu wcześniej. Za pomocą teleskopu Keck na Hawajach byli w stanie zaobserwować galaktykę, oddaloną od Ziemi o 11 miliardów lat świetlnych. Dotychczas możliwa była obserwacja galaktyk odległych o 7-8 miliardów lat.

Jeśli weźmiemy pod uwagę fakt, iż obserwacja odległych obiektów to nic innego jak obserwowanie ich przeszłości, zauważymy, że astronomowie znacznie przybliżyli się do momentu, w którym będą mogli zobaczyć obiekty odległe o 13 miliardów lat. A prawdopodobnie tyle czasu minęło od powstania wszechświata.

Aby zobaczyć tak odległy obiekt, astronomowie wykorzystali dwie sztuczki. Jedna to naturalne zjawisko zaginania światła przez grawitację. Duże obiekty powodują, że przechodzące w ich pobliżu światło zostaje zagięte. Astronomowie wykorzystują takie naturalne kosmiczne "soczewki", gdyż dzięki nim obraz odległych obiektów jest ośmiokrotnie bardziej ostry, niż obiektu obserwowanego bez pośrednictwa "soczewek". Jednak galaktyka, którą obserwowano, jest bardzo mała. Liczy sobie zaledwie kilka tysięcy lat świetlnych. Dlatego też samo ośmiokrotne poprawienie obrazu nie pozwoliłoby na jej obserwację. Uczeni wykorzystali więc technologię optyki adaptacyjnej.

Jej zadaniem jest skompensowanie faktu, iż atmosfera Ziemi rozprasza światło, pogarszając tym samym obraz. Kompensacji tej dokonuje się, mierząc rozproszenie i wprowadzając odpowiednie poprawki. By tego dokonać najpierw oświetla się laserem atmosferę. Promień lasera dociera do cienkiej warstwy sodu, znajdującej się na wysokości około 90 kilometrów i pozostawionej tam przez meteoryty spalające się w atmosferze naszej planety. Promień odbija się od sodu i dociera do głównego lustra teleskopu. Lustro mierzy zakłócenia wywołane przejściem światła przez atmosferę. Dane docierają do komputera, który następnie steruje matrycą niewielkich luster, poruszając o mikrometr każde z nich wielokrotnie w ciągu sekundy. W ten sposób zakłócenia atmosferyczne są eliminowane, a "czysty" obraz jest rejestrowany przez kamerę.

Dzięki obu opisanym technikom uzyskano obraz wyraźniejszy, niż ten dostarczany przez Teleskop Hubble'a którego przecież nie zakłóca atmosfera.

Obserwując odległą o 11 miliardów lat galaktykę, astronomowie odkryli, że wiruje ona podobnie, jak inne galaktyki, jednak, w przeciwieństwie do np. Drogi Mlecznej, nie wykształciła jeszcze ramion.

System optyki adaptacyjnej został zamontowany w teleskopie Keck II w 2004 roku, jednak dotychczas nie był używany do obserwacji tak odległych obiektów.

Odkrycie dokonane przy pomocy teleskopu Keck jest imponujące i pokazuje, ile jeszcze można osiągnąć, korzystając z najnowszych zdobyczy technologii. W ciągu najbliższych kilkunastu lat ma zostać uruchomione urządzenie, które przyćmi Kecka.


Mowa tutaj o Thirty-Meter Telescope (TMT), który będzie wspólnym dziełem Amerykanów i Kanadyjczyków. Lustro TMT będzie miało dziewięciokrotnie większą powierzchnię, niż obszar głównego lustra Kecka. Ponadto nowy teleskop zostanie wyposażony w znacznie bardziej zaawansowaną technologię optyki adaptacyjnej, korzystającą z sześciu laserów. Zostanie wyposażony też w tysiące miniaturowych luster, które będą odpowiedzialne za kompensację zakłóceń obrazu przez atmosferę. W przyszłym roku zapadnie decyzja, czy TMT będzie budowany na Hawajach czy w Chile. Nowy teleskop ma powstać w ciągu 10 lat.

Share this post


Link to post
Share on other sites

Przepraszam was bardzo, czy wszyscy astronomowie zapomnieli o Polach Hubble'a, zwłaszcza o Ultragłębokim? Przecież widoczne tam galaktyki liczą sobie około 1 mld lat, czyli widzimy je jakie były 12 MLD LAT! Więc to co jest tutaj wypisywane jest kompletną bzdurą i picem na wodę.

 

Dziękuję i czekam na komentarz ;-).

Share this post


Link to post
Share on other sites

Jedna to naturalne zjawisko zaginania światła przez grawitację. Duże obiekty powodują, że przechodzące w ich pobliżu światło zostaje zagięte.

 

przy założeniu, że galaktyki odsuwają się od siebie na podstawie pól grawitacyjnych; tylko, że obecnie wiadomo już, że galaktyki scala nie grawitacja, a elektromagnetyzm

Share this post


Link to post
Share on other sites

przy założeniu, że galaktyki odsuwają się od siebie na podstawie pól grawitacyjnych; tylko, że obecnie wiadomo już, że galaktyki scala nie grawitacja, a elektromagnetyzm

 

ale bzdura, sily elektromagnetyczne przyciagaja sie jak i zarowno odpychaja wiec sily te sie rownowaza.

Share this post


Link to post
Share on other sites

13 mld lat swietlnych?

 

Hm skoro szacujemy ze wedle teorii wszechswiat zaczal sie rozrastac 14 mld temu, to czy jak spojrza na wszechswiat tak daleko ze pokaze nam jaki byl 13 mld lat temu, to czy nie spojrzymy w wszechswiat na tyle daleko, ze zobaczymy jak jeszcze go tam nie ma?

Share this post


Link to post
Share on other sites

A znasz jakiś sposób na potwierdzenie, że widzisz NIC? ;) przecież tyle zobaczysz patrząc poza początek wszechświata D

Share this post


Link to post
Share on other sites

przez to mowie, ze nie wiem na cholere wydawac miliony zeby nic zobaczyc ;)

Share this post


Link to post
Share on other sites

Co do mojego poprzedniego postu: więcej informacji tutaj http://en.wikipedia.org/wiki/Hubble_Ultra_Deep_Field i w przypisach z tej strony.

 

P.S. Uważam że to trochę dziwne, by szanująca się strona popularnonaukowa publikowała na swoich ramach takie nie w pełni prawdziwe informacje, no ale to nie ja jestem redaktorem więc to nie moja troska ;-)

Share this post


Link to post
Share on other sites

Obejrzałem filmik i nieźle się uśmiałem, zwłaszcza z opisu obok.. Toż to prawie jak Daniken  ::D

Share this post


Link to post
Share on other sites

Nie, nie prawdziwe - jak byłem młody też się fascynowałem Danikenem, ale potem sam zacząłem znajdywać w jego teoriach duuużo niespójności..

Czytałem kiedyś książkę, napisaną zbiorowo przez polskich autorów (niestety nie pamiętam tytułu, jak znajdę to napiszę) - w której dokładnie po kolei obalono tezy Danikena.. A jeden z piszących pokusił się nawet o stworzenie ciekawej historii - znasz legendę o 12 rycerzach pod Giewontem? Byłeś kiedyś w katedrze Zygmunta na Wawelu? Jeśli nie, to zobacz - tam są dowody na to że pod Giewontem hibernuje 12 obcych, którzy dawno temu rozbili się na Ziemi :D

Share this post


Link to post
Share on other sites

Daenikena powinno się traktować z przymrużeniem oka, co nie oznacza, że jego główny wątek myślowy jest bezpodstawny. informacje powinno się traktować wybiórczo, ale z głową.

Share this post


Link to post
Share on other sites

Ok, Danikena pomińmy. Ale w tym filmie było mnóstwo bzdur, choćby to że źródłem energii gwiazd nie są siły nuklearne.. A w opisie, o wizerunkach bóstw: "Wtedy to nasi praprzodkowie widzieli na niebie plazmowe zjawiska dziś już nieobecne..." - a czemu to są teraz nieobecne? Elektryczność już nie utrzymuje Wszechświata? :D

Oczywiście, teoria względności nie jest do końca poprawna, bo nie uwzględnia modelu kwantowego, i dlatego od dłuższego czasu trwają prace nad kwantową teorią grawitacji - z czego wyszła m.in. teoria superstrun, ale to już dłuższa historia..

Share this post


Link to post
Share on other sites
"Wtedy to nasi praprzodkowie widzieli na niebie plazmowe zjawiska dziś już nieobecne..." - a czemu to są teraz nieobecne?

 

Bo Wenus już ustaliła swoją orbitę. Zjawiska plazmowe są widoczne na zdjęciach z teleskopu kosmicznego oraz mierzone na bieżąco przez SOHO (są też widoczne gołym okiem ale nie tak spektakularne jak wtedy).

Share this post


Link to post
Share on other sites

To teoria, na którą nie ma zbyt wielu dowodów. Wiem że ruch orbitalny Wenus jest bardzo charakterystyczny, ale prawdopodobieństwo, że Wenus przyleciała spoza układu słonecznego jest naprawdę mizerne - nie dość, że w jej ojczystym układzie planetarnym musiałoby zajść podobnie gwałtowne zdarzenie, aby wyrzucić ją z orbity, to następnie musiałaby trafić w nasz układ... nieee, chyba jednak Wenus powstała z tej samej chmurki co Ziemia i Słońce

Share this post


Link to post
Share on other sites

prawdopodobieństwo, że Wenus przyleciała spoza układu słonecznego jest naprawdę mizerne

 

faktem jest, że teksty sumeryjskie (oraz częściowo teksty majów) dokładnie opisują powstanie naszego układu słonecznego, w tym przybycie komety wenus do naszego układu słonecznego, która naturalną koleją rzeczy dostała się na orbitę. mamy nawet szczegółowe dane na temat planety, która istniała w miejscu, gdzie teraz znajduje się pas planetoid.

Share this post


Link to post
Share on other sites

Mogę prosić o jakiegoś linka do tych tekstów, chętnie poczytam :D Zresztą, mamy też szczegółowe teksty Greków, którzy opisują jak powstał świat (wiesz, z Chaosu Uranos i Gaja, potem Kronos i Rea, a dalej już samo poszło), tak samo jest dla innych kultur.. dlaczego teksty Sumerów czy Majów są dla Ciebie bardziej wiarygodne niż te?

A co do Wenus jako komety - jej skład jest zupełnie inny od składu komet, jest też od nich kilkaset razy większa, co przeczy tezie o tym że była kometą.

Share this post


Link to post
Share on other sites
antyspecyficzno-burzliwy-charakter-dedominujący-endosferę-formy-regrawitującej

 

;D ;D dojmująco-fantastycznie-długie-i-skomplikowano-zwięzłe-wyrażenie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Grupa astronomów z University of Texas at Austin doszła do wniosku, że wybudowany na Księżycu teleskop – pomysł, który NASA zarzuciła dekadę temu – może rozwiązać problemy, z którymi inne teleskopy sobie nie poradzą. Księżycowy teleskop mógłby bowiem dostrzec pierwsze gwiazdy, które powstały we wszechświecie. Zespół, na którego czele stoi Anna Schauer pracująca przy Teleskopie Hubble'a, opublikuje wyniki swoich badań w The Astrophysical Journal.
      Historia astronomii to coraz potężniejsze teleskopy, które pozwalają nam dostrzec obiekty coraz bliżej Wielkiego Wybuchu, mówi profesor Volker Bromm, astrofizyk-teoretyk, który od dziesięcioleci bada pierwsze gwiazdy. Teleskop Kosmiczny Jamesa Webba (JWST) pozwoli nam zobaczyć pierwsze galaktyki. Jednak teorie mówią, że zanim powstały pierwsze galaktyki istniały gwiazdy III populacji. Ich dostrzeżenie jest nawet poza zasięgiem JWST. Do ich badań potrzebujemy jeszcze potężniejszego urządzenia.
      Pierwsze gwiazdy powstały około 13 miliardów lat temu. Narodziły się z połączenia wodoru oraz helu i prawdopodobnie były nawet 100-krotnie większe od Słońca. Nowe obliczenia wykonane przez Schauer pokazują, że teleskop, którego projekt NASA porzuciła przed dekadą, mógłby badać te gwiazdy. W roku 2008 zespół Rogera Angela z University of Arizona zaproponował zbudowanie na Księżycu urządzenia o nazwie Lunar Liquid-Mirror Telescope (LLMT). NASA przeprowadziła analizy dotyczące zasadności budowy takiego teleskopu i zrezygnowała z projektu. Jak zauważa Niv Drory z McDonald Obserwatory, wówczas jednak nie istniała nauka dotycząca najwcześniejszych gwiazd. Obecnie wiele wskazuje na to, że taki teleskop mógłby je badać.
      Potencjalne księżycowe laboratorium, nazwane przez Shauer „Ultimately Large Telescope”, miałoby średnicę 100 metrów. Teleskop działałby autonomicznie, byłby zasilany przez zbudowaną obok elektrownię fotowoltaiczną i przesyłałby dane do satelity na orbicie Księzyca.
      Lustro takiego teleskopu nie byłoby wykonane ze szkła, ale z płynu, który jest lżejszy, zatem jego transport na Księżyc byłby tańszy. Teleskop byłby obracającą się kadzią wypełnioną płynem, na powierzchni którego znajdowałby się metaliczny płyn. Mogłaby to być np. rtęć. Kadź bez przerwy by się obracała, by nadać powierzchni płynu odpowiedni paraboliczny kształt, dzięki czemu działałaby ona jak lustro paraboliczne. Autorzy najnowszego studium mówią, że teleskop taki mógłby powstać w kraterze na północnym lub południowym biegunie księżyca.
      Żyjemy w świecie pełnym gwiazd. Kluczowym pytaniem jest więc to o utworzenie się pierwszych gwiazd. Ich powstanie było bowiem kluczowym elementem w historii wszechświata, kiedy to pierwotne warunki panujące po Wielkim Wybuchu prowadziły do coraz bardziej złożonej budowy kosmosu, a z czasem umożliwiły powstanie planet, życia oraz istot inteligentnych. Moment powstania pierwszych gwiazd jest poza możliwościami obserwacyjnymi obecnych lub planowanych już teleskopów. Dlatego też musimy pomyśleć o urządzeniu, które pozwoli nam na obserwacje pierwszych gwiazd u zarania dziejów, mówi Bromm.
      Warto w tym miejscu przypomnieć, że niedawno pisaliśmy iż NASA chce wiedzieć, czy roboty mogą wybudować na Księżycu gigantyczny radioteleskop.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Australijscy teoretycy kwantowi wykazali, że możliwe jest przełamanie obowiązującej od 60 lat bariery ograniczającej koherencję światła laserowego. Koherencja, czyli spójność wiązki światła, może być w przypadku laserów opisana jako liczba fotonów wyemitowanych jeden po drugim w tej samej fazie. To element decydujący o przydatności lasera do różnych zastosowań.
      Obowiązujące poglądy na temat spójności światła laserowego zostały nakreślone w roku 1958 przez amerykańskich fizyków, Arthura Schawlowa i Charlesa Townesa. Obaj otrzymali zresztą Nagrodę Nobla za swoje prace nad laserami. Teoretycznie wykazali, ze koherencja wiązki lasera nie może być większa niż kwadrat liczby fotonów obecnych w laserze, mówi profesor Howard Wiseman z Griffith University. Stał on na czele grupy naukowej złożonej z Griffith University i Macquarie University.
      Poczynili jednak pewne założenia odnośnie ilości energii dostarczanej do lasera oraz sposobu, w jaki jest ona uwalniana, by uformować wiązkę. Ich założenia miały wówczas sens i wciąż są prawdziwe w odniesieniu do większości laserów. Jednak mechanika kwantowa nie potrzebuje takich założeń, dodaje Wiseman.
      W naszym artykule wykazaliśmy, że prawdziwa granica koherencji, nakładana przez mechanikę kwantową, to czwarta potęga liczby fotonów przechowywanych w laserze, dodaje profesor Dominic Berry.
      Naukowcy zapewniają, że taką koherencję można osiągnąć w praktyce. Przeprowadzili bowiem symulację numeryczną i stworzyli oparty na mechanice kwantowej model lasera, który może osiągnąć ten nowy teoretyczny poziom spójności wiązki. Wiązka taka, poza spójnością, jest identyczna z wiązką konwencjonalnego lasera.
      Trzeba będzie poczekać na pojawienie się takich laserów. Udowodniliśmy jednak, że używając nadprzewodników można będzie zbudować taki laser, którego granice będą wyznaczane przez zasady mechaniki kwantowej. Obecnie ta sama technologia jest wykorzystywana do budowy komputerów kwantowych. Nasz laser może właśnie w nich znaleźć zastosowanie, mówi doktorant Travis Baker.
      Profesor Wiseman dodaje zaś, że prace jego zespołu każą postawić interesujące pytanie o możliwość skonstruowania bardziej energooszczędnych laserów. To przyniosłoby duże korzyści. Mam nadzieję, że w przyszłości będziemy mogli zbadać tę kwestię.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Very Large Telescope zauważył sześć galaktyk zgromadzonych wokół supermasywnej czarnej dziury z czasów, gdy wszechświat liczył sobie mniej niż miliard lat. Po raz pierwszy zauważono takie zgrupowanie z czasów tak nieodległych od Wielkiego Wybuchu. Odkrycie pomaga lepiej zrozumieć, w jaki sposób supermasywne czarne dziury mogą powstawać i ewoluować tak szybko.
      Głównym celem naszych badań było lepsze zrozumienie jednych z najbardziej niezwykłych obiektów astronomicznych – supermasywnych czarnych dziur istniejących już we wczesnym wszechświecie. Dotychczas nikt nie potrafi dobrze wyjaśnić ich istnienia, mówi główny autor badań, Marco Mignoli z Narodowego Instytutu Astrofizyki w Bolonii.
      Nowe obserwacje ujawniły istnienie galaktyk znajdujących się w okolicach supermasywnej czarnej dziury, a całość otoczona jest „pajęczą siecią” gazu rozciągającego się na obszarze 300-krotnie większym niż obszar Drogi Mlecznej. Olbrzymia ilość gazu zasila zarówno galaktyki, jak i czarną dziurę. Naukowcy szacują, że czarna dziura ma masę miliarda mas Słońca, a otaczająca całość gazowa struktura powstała, gdy wszechświat liczył sobie zaledwie 900 milionów lat.
      Obecnie uważa się, że pierwsze czarne dziury powstały z pierwszych gwiazd, które się zapadły. Musiały one błyskawicznie ewoluować, skoro po 900 milionach lat istnienia wszechświata osiągały masę miliarda Słońc. Astronomowie mają jednak problemy z wyjaśnieniem tej ewolucji. Takie czarne dziury musiałyby bowiem bardzo szybko wchłaniać olbrzymie ilości materii. Odkrycie galaktyk otaczających czarną dziurę i spowijającej wszystko sieci gazu może wyjaśniać tę błyskawiczną ewolucję.
      Powstaje jednak pytanie, w jaki sposób dochodzi do tworzenia się „pajęczej sieci” gazu. Astronomowie sądzą, że bierze w tym udział ciemna materia. To ona przyciąga gaz, który tworzy olbrzymie struktury, wystarczające, by wyewoluowały z nich zarówno galaktyki, jak i czarne dziury.
      Nasze badania wspierają hipotezę mówiącą, że najbardziej odległe masywne czarne dziury tworzą się i rosną w masywnym halo ciemnej materii. Dotychczas takich struktur nie wykrywaliśmy, gdyż ograniczały nas nasze możliwości obserwacyjne, wyjaśnia współautor badań Colin Norman z Uniwersytetu Johnsa Hopkinsa. Zaobserwowane teraz galaktyki są jednymi z najsłabiej świecących, jakie udało się zarejestrować.  Aby je zauważyć, konieczne były wielogodzinne obserwacje za pomocą jednych z najpotężniejszych teleskopów optycznych. Dzięki temu uczeni dowiedli też, że istnieje związek pomiędzy czterema galaktykami, a czarną dziurą
      Sądzimy, że obserwujemy wierzchołek góry lodowej. Że te galaktyki, które widzimy, są najjaśniejszymi, jakie się tam znajdują, przyznaje Barbara Balmaverde z Narodowego Instytutu Astrofizyki w Turynie.
      Pozostaje tylko mieć nadzieję, że jeszcze większe teleskopy optyczne, jak budowany właśnie Extremely Large Telescope, pozwolą dostrzec więcej szczegółów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kosmologowie od dawna mają problem z jedną z podstawowych wartości opisujących wszechświat – tempem jego rozszerzania się. Różne pomiary przynoszą bowiem różne wartości. Teraz coraz wyraźniej widać kolejne pęknięcie w standardowym modelu kosmologicznym. Niedawno grupa naukowców wykazała, że wszechświat jest niespodziewanie rzadki. Materia nie gromadzi się w nim tak, jak się spodziewano. Podobne sygnały pojawiały się już wcześniej, tym razem jednak mamy do czynienia z najbardziej szczegółową analizą danych zbieranych przez 7 lat.
      Dane są na tyle wiarygodne, że niektórzy specjaliści zastanawiają się, czy nie wpadliśmy na trop czegoś nieznanego. Mamy już ciemną materię i ciemną energię. Mam nadzieję, że do wyjaśnień nie potrzebujemy kolejnej ciemnej rzeczy, mówi Michael Hudson, kosmolog z University of Waterloo, który nie był zaangażowany w najnowsze badania.
      Autorzy najnowszych badań, skupieni wokół inicjatywy Kilo-Degree Survey (KiDS), obserwowali około 31 milionów galaktyk, położonych w promieniu do 10 miliardów lat świetlnych od Ziemi. Na podstawie tych obserwacji wyliczyli średni rozkład niewidocznego gazu i ciemnej materii we wszechświecie. Odkryli, że jest jej niemal o 10% mniej niż przewiduje jeden z najpowszechniej uznawanych modeli kosmologicznych, Model Lambda-CDM.
      W ciągu ostatnich ośmiu lat pojawiło się kilkanaście badań, których autorzy – korzystając z różnych technik – dochodzili do wniosku, że materia nie gromadzi się zgodnie z przewidywaniami. Rozpatrywane osobno badania te nie mają większego znaczenia. Rozważane w nich kwestie są tak trudne do zbadania, że łato mogło dojść do pomyłek. Jednak coraz częściej pojawiają się głosy, że to nie statystycznie dopuszczalne niedoskonałości w badaniach, ale reguła. Gdy w wielu różnych zestawach danych zaczynasz dostrzegać tę samą rzecz, musisz wziąć pod uwagę, że coś w tym jest, stwierdza Hudson.
      Naukowcy muszą teraz pogodzić dwie sprzeczne ze sobą rzeczy. Z jednej strony, by określić tempo rozszerzania się wszechświata – w wiele wskazuje na to, że jest ono większe, niż sądzono – muszą znaleźć dodatkowy element, który go napędza. Z drugiej jednak strony skoro materia nie gromadzi się razem tak, jak przypuszczano, do siły na nią oddziałujące są słabsze, a nie mocniejsze, jak wymagałoby tego wyjaśnienie tempa rozszerzania się wszechświata. Julien Lesgourgues, kosmolog-teoretyk z Uniwersytetu Aachen mówi, że znalezienie satysfakcjonującego wyjaśnienia obu tych zjawisk będzie koszmarem.
      Podejmowane są pewne próby wyjaśnień wspomnianych zjawisk. Przyspieszenie ekspansji wszechświata można by wyjaśnić „ciemnym promieniowaniem”. Jednak trzeba by je zbilansować dodatkową materią, która by się grupowała. Aby osiągnąć obserwowane mniejsze grupowanie się, trzeba by wprowadzić dodatkowy element, który to uniemożliwia. Tutaj pojawia się próba wyjaśnienia w postaci zamiany ciemnej materii – która powoduje grupowanie się materii – w ciemną energię, powodującą jej oddalanie się od siebie. Można też przyjąć, że Ziemia znajduje się w jakimś wielkim bąblu rozrzedzonej materii, co zaburza nasze obserwacje. Lub też uznać, że szybkie tempo rozszerzania się wszechświata i mniejsze grupowanie się materii nie są ze sobą powiązane. Nie widzę obecnie żadnego satysfakcjonującego wyjaśnienia. Jeśli jednak byłbym teoretykiem byłbym bardzo podekscytowany, mówi Hudson.
      Wciąż też istnieje prawdopodobieństwo, że oba omawiane zjawiska lub przynajmniej jedno z nich, w rzeczywistości nie mają miejsca. Jednak by to stwierdzić, trzeba poczekać na inne dane. KiDS to jeden z trzech dużych projektów badawczych. Inne to międzynarodowy Dark Energy Survey prowadzony w Chile i japoński Hyper Suprime-Cam. W ramach każdego z nich skanowany jest inny fragment nieboskłonu na inną głębokość. W czasie ostatniej kampanii Dark Energy Survey przeskanowano obszar 5-krotnie większy niż badał KiDS. Wyniki powinny ukazać się w ciągu najbliższych miesięcy. Wszyscy na nie czekają. To kolejna wielka rzecz w kosmologii, mówi Daniel Scolnic, kosmolog z Duke University, który specjalizuje się w badaniu tempa rozszerzania się wszechświata.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nie wszystkie gwiazdy Drogi Mlecznej są z nią związane siłami, które gwarantują ich pozostanie w galaktyce. Naukowcy znają już kilkadziesiąt gwiazd hiperprędkościowych, czyli takich, które poruszają się z na tyle dużą prędkością, iż w końcu wylecą poza Drogę Mleczną.
      Jeszcze do niedawna jedynymi znanymi gwiazdami hiperprędkościowymi były błękitne olbrzymy, które wywodziły się z centrum galaktyki. Tam zostały przyspieszone przez czarną dziurę. Przed pięciu laty informowaliśmy o odkryciu nowej kategorii gwiazd hiperprędkościowych. To obiekty mniej więcej wielkości Słońca, które prawdopodobnie nie pochodzą z centrum galaktyki, zatem mechanizm ich przyspieszenia musiał być inny niż obecność czarnej dziury.
      LAMOST-HVS to najbliższa Słońcu gwiazda hiperprędkościowa. Naukowcom z University of Michigan udało się, dzięki użyciu Teleskopu Magellana i satelity Gaia, prześledzić trasę, jaką przez ostatnie 33 miliony lat przebyła ta gwiazda. Obecnie porusza się ona z prędkością 568 km/s (2 044 800 km/h).
      Jedna z teorii mówiąca o powstawaniu gwiazd hiperprędkościowych zakłada, że to pozostałości układu podwójnego, który znalazł się zbyt blisko czarnej dziury. Ta wchłonęła jedną z gwiazd, a drugą przyspieszyła do prędkości pozwalającej na wyrwanie się z objęć grawitacyjnych galaktyki.
      Jednak gdy prześledzono trasę LAMOST-HVS okazało się, że w ciągu ostatnich 33 milionów lat nie zbliżyła się ona nawet do czarnej dziury. Musiało przyspieszyć ją coś innego.
      Do wyrzucenia gwiazdy z galaktyki potrzebne jest niezwykle silne oddziaływanie grawitacyjne. Autorzy najnowszych badań uważają, że może ono zostać wytworzone przez gromadę gwiazd, w której znajduje się co najmniej kilkanaście gwiazd o masie co najmniej 30 mas Słońca. Jeśli LAMOST-HVS znalazła się blisko takiej gromady, mogła zostać przyspieszona do hiperprędkości. Alternatywnym rozwiązaniem byłoby spotkanie z czarną dziurę o masie około 100 mas Słońca.
      Czarne dziury o tak niewielkiej masie są od dawna przedmiotem spekulacji i poszukiwań. Dotychczas przeprowadzono kilka obserwacji, które mogłyby potwierdzać ich istnienie, jednak wciąż brak jednoznacznych dowodów. Jednak uważa się, że takie czarne dziury mogą powstawać w masywnych gromadach gwiazd, takich, jaka mogła przyspieszyć LAMOST-HVS.
      Naukowcy, którzy prześledzili historię LAMOST-HVS stwierdzili, że tam, gdzie gwiazda znajdowała się przed 33 milionami lat nie widać żadnej masywnej gromady gwiazd. Jednak taka gromada z łatwością mogłaby zostać przesłonięta przez pył, więc fakt, że niczego tam nie widzimy, nie oznacza, że niczego tam nie ma. Badania wykazały, że gwiazda pochodzi z Ramienia Węgielnicy, które trudno jest obserwować z Ziemi. Jeśli udałoby się zaobserwować tam gromadę gwiazd, być może zdobylibyśmy dowody na istnienie niewielkich czarnych dziur.
      Tak czy inaczej, pewne jest, że LAMOST-HVS została przyspieszona przez coś innego niż Saggitarius A* w centrum galaktyki.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...