Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pomiary wskazują, że neutrino jest znacznie większe od jądra atomu

Rekomendowane odpowiedzi

Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje nawet 100 bilionów tych cząstek subatomowych. Mimo tej obfitości neutrino jest najsłabiej poznaną cząstką elementarną. Bardzo słabo oddziałuje ono z materią, dlatego też trudno jest je zarejestrować i badać. Tymczasem fizycy od kilkunastu lat coraz bardziej interesują się neutrinami, gdyż mogą one wyjaśnić wiele tajemnic, na przykład, dlaczego we wszechświecie jest więcej materii niż antymaterii.

Jedną z pierwszych cech neutrin, jakie powinniśmy poznać, są ich rozmiary. Znajomość tego parametru pozwoli na zaprojektowanie bardziej precyzyjnych detektorów, dzięki którym można będzie lepiej zbadać neutrina. Międzynarodowy zespół naukowy opisał na łamach Nature opracowaną przez siebie metodę pomiaru rozmiarów neutrino elektronowego oraz uzyskane wyniki.

Uczeni przeprowadzili eksperyment, podczas którego obserwowali radioaktywny rozpad berylu (7Be). Rozpada się on do litu (7Li). Podczas tego procesu ma miejsce wychwyt elektronu, kiedy to elektron atomu jest przechwytywany przez proton z jego jądra. Powstaje w ten sposób neutron pozostający w jądrze nowego pierwiastka – litu-7 – oraz emitowane jest neutrino elektronowe.

Uwalniana jest energia, która odrzuca nowo powstały atom litu-7 w jednym kierunku, a neutrino w przeciwnym. Badacze obserwowali ten proces w akceleratorze, w którym umieścili bardzo czułe detektory neutrin. Dzięki temu mogli zbadać moment pędu atomu litu i na tej podstawie obliczyć rozmiary neutrino.

Pomiar oddaje kwantową naturę neutrino. Co oznacza, że „rozmiar” należy tutaj rozumieć jako pewien stopień niepewności co do przestrzeni zajmowanej przez neutrino. Z obliczeń wynika, że dolną granicą rozmiarów pakietu falowego neutrino elektronowego jest 6,2 pikometrów. To oznacza, że pakiet falowy neutrin jest znacznie większy niż pakiet falowy typowego jądra atomowego, który liczy się w femtometrach. Dla jądra wodoru jest to ok. 1,2 fm, dla jądra węgla, ok 3,5 fm.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Neutrino najpierw było jednym magicznym punkcikiem, potem trzema, potem oscylującym między nimi zyskując masy (wbrew Modelowi Standardowemu), podejrzenie sterylnych ... a teraz ten magiczny punkcik spuchł do rozmiarów tysiące razy większych niż jądro ...

... co osobiście oczekiwałem od ~2009 (rozwinięte do https://arxiv.org/pdf/2108.07896 ) ... magiczne idealne punkciki to jest tylko tzw. przybliżenie perturbacyjne, czyli coś w stylu "jabłko + jabłko = 2 jabłka" - poprawne, aczkolwiek wolno się pytać o budujące je struktury, w fizyce cząstek tzw. obrazem nieperturbacyjnym pytającym o konfiguracje pól.

No i niby podobnie punktowy elektron, z perspektywy pól ma m.in. E ~ 1/r^2 elektryczne dla Coulomba ... neutrino też potrzebuje jakichś pól dla swojego oddziaływania słabego, może grawitacyjnego ... pytanie jakie konkretnie? Nikt nie wie - wrzuciłem wczoraj do fizyków cząstek, ponad 10 tys. odwiedzin, tylko konsternacja: https://www.reddit.com/r/ParticlePhysics/comments/1iqmlgf/how_big_is_a_neutrino_were_finally_starting_to/

Myśląc o tym od tych prawie 16 lat, najbliższa droga to chyba przez tzw. string hadronization ( http://www.scholarpedia.org/article/Parton_shower_Monte_Carlo_event_generators#String_model ) - założenie m.in. popularne dla symulacji zderzeń w LHC, że w jego wyniku powstaje struna kwarkowa, która rozpada się do cząstek. Taka struna jest modelowana jako wir topologiczny ( https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.054504 ) - czyli pozostaje znaleźć korespondencję między tym do czego może się rozpaść wir topologiczny, a tym co obserwują w zderzeniach w LHC.

No i najlżejsza jest pętla wiru topologicznego - bardzo trudno oddziałująca, zwykle lekka (chyba że wydłużona), występująca w 3 rodzinach między którymi może oscylować rotacjami pola ... czyli dokładnie jak neutrino - przypadek?

5IUWtED.png

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, Jarek Duda napisał:

No i niby podobnie punktowy elektron, z perspektywy pól ma m.in. E ~ 1/r^2 elektryczne dla Coulomba

Co to jest "perspektywa pól"? Czym udało Ci się zmierzyć to pole? Bo zazwyczaj przyjmuje się, że przybliżenie klasyczne załamuje się dla odległości mniejszych od rozmiaru Comptona dla elektronu... Co pozwala Ci tak pewnie mówić o klasycznych polach w skalach od niej mniejszych i to w XXI wieku?

1 godzinę temu, Jarek Duda napisał:

Neutrino najpierw było jednym magicznym punkcikiem, potem trzema, potem oscylującym między nimi zyskując masy

Tylko się cieszyć - nasza wiedza o neutrinach ulega poprawieniu.

2 godziny temu, Jarek Duda napisał:

a teraz ten magiczny punkcik spuchł do rozmiarów tysiące razy większych niż jądro

Tak samo jak elektron w różnych sytuacjach - atom wodoru to zasadniczo spuchnięty w ten sam sposób (zlokalizowany wokół jądra) elektron.

2 godziny temu, Jarek Duda napisał:

jest tylko tzw. przybliżenie perturbacyjne, czyli coś w stylu "jabłko + jabłko = 2 jabłka" - poprawne, aczkolwiek

Mam problem ze zrozumieniem związku pomiędzy przybliżeniem perturbacyjnym a jabłkami, i pewnie nie ja jeden.
Dla mnie "jabłko + jabłko = 2 jabłka" to obliczenia dość dokładne a nie przybliżone.

3 godziny temu, Jarek Duda napisał:

przypadek?

Prawdopodobnie. Zjawisk charakteryzowanych liczbami 1-3 jest od cholery.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Chciałem coś napisać, zwłaszcza o "rozmiarach", czyli o czymś, o czym powinno być na pierwszym roku studiów fizyki, choć - jak widać - niektórzy (nawet z trzema doktoratami) tego nie doświadczyli, ale... Zaraz Nihilo wyskoczy, że:

Cytat

znowu bardacha się zrobiła, a mogło być ciekawie

Zatem Nihilo, nowe otwarcie tego samego, jest grzecznie - Pan prowadzi "dysputę". ;) Zapraszam i proszę.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
11 godzin temu, Astro napisał:

Chciałem coś napisać (...) Zaraz Nihilo wyskoczy (...) Pan prowadzi "dysputę". ;) Zapraszam i proszę.

A coś Ty się taki strachliwy (wstydliwy?) zrobił? Pisz i nie marudź ;)

Przy okazji:

17 godzin temu, KopalniaWiedzy.pl napisał:

Dzięki temu mogli zbadać moment pędu atomu litu

Pęd, nie moment pędu: "momentum" to po ichniemu pęd, moment pędu to "angular momentum'.
 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Niemieckiego Centrum Badań nad Bioróżnorodnością i Uniwersytetu Fridricha Schillera w Jenie informują, że ocieplanie klimatu może w szczególnie trudnej sytuacji postawić duże zwierzęta. Przyczyną jest ograniczona prędkość, z jaką mogą się poruszać. Niezależnie bowiem od tego, czy zwierzę chodzi, lata czy pływa, jego tempo poruszania się jest ograniczone efektywnością pozbywania się nadmiaru ciepła generowanego przez mięśnie.
      Zdolność zwierząt do zmiany miejscu pobytu jest kluczowa dla przetrwania gatunku. To ona określa jak szybko i daleko zwierzę może przemieścić się w poszukiwaniu pożywienia, partnera, jaka jest jego zdolność do zajęcia nowych terenów. Staje się ona szczególnie ważna w obliczu coraz bardziej pofragmentowanych przez człowieka habitatów czy kurczących się zasobów pożywienia i wody.
      Alexander Dyer i jego zespół przyjrzeli się 532 gatunkom zwierząt i na podstawie swoich badań stworzyli model opisujący związek pomiędzy wielkością gatunku, a jego tempem przemieszczania się.
      Wydawałoby się, że większe zwierzęta, dzięki większym nogom, skrzydłom czy płetwom, powinny przemieszczać się szybciej. Jednak model pokazał, że w rzeczywistości najszybciej przemieszczają się zwierzęta średniej wielkości. Naukowcy uważają, że większe zwierzęta poruszają się stosunkowo wolniej, gdyż potrzebują więcej czasu na pozbycie się ciepła generowanego przez mięśnie. Muszą więc bardziej uważać, by nie przegrzać organizmu.
      Badania te pozwalają nam lepiej zrozumieć zdolność poszczególnych gatunków do przemieszczania się i określić ich prędkość w zależności od rozmiarów ciała. Możemy na tej podstawie określić, czy dany gatunek będzie w stanie przemieścić się pomiędzy dwoma, oddzielonymi przez człowieka, habitatami nawet nie znając szczegółów biologii tego gatunku. Na tej podstawie przypuszczamy, że większe gatunki są bardziej narażone na niebezpieczeństwa związane z fragmentacją habitatu i globalnym ociepleniem. Są zatem bardziej narażone na wyginięcie. Jednak kwestia ta wymaga dalszych badań, dodaje Dyer.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV).
      KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu.
      Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina.
      Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington.
      Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą  prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Obowiązujący od ponad 70 lat powłokowy model jądra atomowego trzyma się dobrze. Jednak badania przeprowadzone właśnie w ramach eksperymentu ISOLDE w CERN są kolejnymi dającymi sprzeczne informacje odnośnie liczb magicznych.
      Z modelu powłokowego możemy wywnioskować, że te jądra, których powłoki są wypełnione, mają większą energię wiązania, są zatem stabilniejsze niż inne jądra. Liczby protonów i neutronów, dla których powłoki są wypełnione, nazywane są liczbami magicznymi. Obecnie uznane liczby magiczne zarówno dla protonów jak i neutronów to 2, 8, 20, 28, 50, 82 i 126. Jeśli mamy do czynienia z jądrem, dla którego i protony i neutrony występują w liczbie magicznej, mówimy o jądrze podwójnie magicznym. Jądrem podwójnie magicznym jest np. jądro tlenu, zawierające 8 protonów i 8 neutronów.
      Od mniej więcej dwóch dekad kolejne eksperymenty wskazują, że liczbą magiczną, przynajmniej dla neutronów, może być 32. W 2013 roku naukowcy z CERN badając izotopy wapnia bogate w neutrony zauważyli nagły spadek energii separacji neutronów poza liczbą N=32. Literami N i Z oznacza się, odpowiednio, liczbę neutronów i protonów w jądrze. Spadek taki wskazuje zaś, że 32 może być liczbą magiczną. Jeszcze wcześniej ci sami naukowcy podczas badania spektrum wzbudzenia wapnia-52 zaobserwowali wyższe niż spodziewane wzbudzenie przy wartościach Z=20 i N=32. Jako, że wiemy, iż 20 jest liczbą magiczną, sugerowałoby to istnienie w tym przypadku jądra podwójnie magicznego. Jakby tego było mało, badania prowadzone w japońskim RIKEN wskazują na zmiany pobudzenia nie tylko jądra wapnia-52 (N=32), ale też wapnia-54 (N=34).
      Z drugiej jednak strony badania promieni kwadratowych jąder potasu-51 i wapnia-52, dla których N=32 nie wykazało żadnych oznak, że mamy do czynienia z jądrami magicznymi.
      Naukowcy z ISOLDE badali teraz bardzo egzotyczne jądro potasu-52 (N=33). Poszukiwali w nim nagłego relatywnego wzrostu promienia kwadratowego, co jest silnym wskazaniem, że N=32 jest liczbą magiczną. Jednak niczego takiego nie zauważyli.
      Nowe badania wprowadzają tylko więcej zamieszania. Nie odrzucamy wyników wcześniejszych badań, gdyż były one wykonane prawidłowo, na sprzęcie najwyższej klasy. Kwestionujemy tylko płynące z nich wnioski, że 32 jest liczbą magiczną dla neutronów, mówi Thomas Cocolios, fizyk atomowy z Uniwersytetu Katolickiego w Leuven (KU Leuven). Teraz uczeni planują przeprowadzenie podobnych pomiarów dla wapnia-53 i wapnia-54, by zweryfikować twierdzenia, iż N=34 jest liczbą magiczną.
      Wiele wskazuje na to, że teoretycy będą musieli przemyśleć problem dotyczący N=32. Badanie energii wskazuje, że jest to liczba magiczna, jednak badanie wielkości jądra temu przeczy. Obserwujemy tutaj sprzeczność pomiędzy badaniami, które dają wiarygodne wyniki. Muszą się tym zająć teoretycy, mówi Gerda Neyens, fizyk teoretyczna z KU Leuven, która kieruje eksperymentem ISOLDE.
      Uczona dodaje, że zrozumienie tego fenomenu nie będzie łatwe, gdyż interakcje pomiędzy protonami a neutronami nie zachodzą bezpośrednio, a na poziomie kwarków. To utrudnia nam zrozumienie jąder atomowych, szczególnie tych egzotycznych. Im więcej badamy egzotycznych jąder, tym bardziej zdajemy sobie sprawę, że nasze modele teoretyczne mają coraz większe kłopoty ze spójnym opisaniem zjawisk w nich zachodzących, dodaje Cocolios.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...