Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Grawitacja działa na antymaterię tak, jak na materię, potwierdzają fizycy z CERN

Rekomendowane odpowiedzi

Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.

Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.

Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.

Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo dobrze, zostaje potwierdzenie dla elektronów - jest ta słynna próba z 1967 Witteborn, Fairbank ( https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1049 ) ... i wyszło im że przyspieszenie grawitacyjne dla elektronu jest blisko zero ... ale okazało się że jest to wina grawitacyjnego gradientu ładunku w rurce użytej do ekranowania, co niweluje efekt.

Ciekawe czy kiedyś się uda? Slajdy: https://indico.cern.ch/event/361413/contributions/1776296/attachments/1137816/1628821/WAG2015.pdf

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli upadła moja teoria, co się stało z antymaterią, bo zakładała ona, że antymateria będzie działać anty-grawitacyjnie.
Ale badane było oddziaływanie dużego obiektu materii na mały obiekt antymaterii. Należałoby jeszcze sprawdzić, czy oddziaływanie dużego obiektu antymaterii na mały obiekt antymaterii, też będzie miało taki sam skutek. Niby wydaje się, że to niczego nie powinno zmienić, ale nie takie cuda już się w fizyce zdarzały.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie z California Institute of Technology (Caltech) odkryli, że Leonardo da Vinci rozumiał i badał grawitację. Zajmował się więc tym przedmiotem na setki lat przed Newtonem. W artykule opublikowanym na łamach pisma Leonardo naukowcy przeanalizowali jeden z dzienników da Vinciego i wykazali, że słynny uczony zaprojektował eksperymenty dowodzące, że grawitacja jest formą przyspieszenia o określił stałą grawitacji z 97-procentową dokładnością.
      Żyjący na przełomie średniowiecza i renesansu uczony wyprzedzał swoją epokę w wielu dziedzinach. Także, jak się okazuje, z dziedzinie badań nad grawitacją. Sto lat później grawitacją zajmował się Galileusz, a prawo powszechnego ciążenia zostało sformułowane przez Newtona w 170 lat po śmierci Leonardo. Tym, co przede wszystkim ograniczało badania słynnego Włocha był brak odpowiednich narzędzi. Nie był np. w stanie dokładnie mierzyć czasu, w jakim ciało spada na ziemię.
      W 2017 roku profesor Mory Gharib omawiał ze studentami techniki wizualizacji przepływu cieczy wykorzystywane przez da Vinciego. W zdigitalizowanym i właśnie udostępnionym przez British Library Codex Arundel zauważył serię rysunków przedstawiających trójkąty tworzone przez podobne do ziaren piasku obiekty wysypujące się z dzbana. Moją uwagę zwrócił napis „Equatione di Moti” przy jednym z trójkątów równoramiennych. Zacząłem się zastanawiać, co Leonardo miał na myśli, wspomina uczony. Gharib poprosił o pomoc Chrisa Roha z Caltechu i Flavio Nocę z Uniwersytetu Nauk Stosowanych i Sztuki Zachodniej Szwajcarii (HES-SO). Wspólnie zasiedli do analizy diagramów.
      Okazało się, że da Vinci opisał eksperyment, w którym dzban na wodę jest przesuwany w linii prostej równolegle do gruntu i wylatuje z niego albo woda albo piasek. Z notatek wynika, że włoski uczony zdawał sobie sprawę, iż wylatujący materiał nie spada ze stałą prędkością, ale przyspiesza oraz z tego, że gdy wyleci z dzbana, a zatem ten nie ma nań już wpływu, przestaje przyspieszać w kierunku horyzontalnym, a przyspiesza wyłącznie wertykalnie. Jeśli dzban przesuwa się ze stałą prędkością, linia tworzona przez wypadający materiał jest pozioma i nie tworzy się trójkąt. Gdy zaś przyspiesza ze stałą prędkością, linia opadającego materiału jest prosta, ale odchylona, tworząc trójkąt. W kluczowym diagramie da Vinci zauważa, że jeśli przyspieszenie dzbana jest równe przyspieszeniu opadającego materiału, tworzy się trójkąt równoramienny. To właśnie tam da Vinci napisał „Equatione di Moti” czyli „wyrównywanie ruchów”.
      Da Vinci próbował opisać to przyspieszenie za pomocą matematyki. Naukowcy użyli modelowania komputerowego do sprawdzenia obliczeń wielkie uczonego i znaleźli błąd. Leonardo zmierzył się z tą kwestią i wyliczył, że droga spadającego obiektu była proporcjonalna do 2 do potęgi t (gdzie t reprezentuje czas), a powinna być proporcjonalna do t2, mówi Roh. To błąd, ale później zauważyliśmy, że swój błędny wzór wykorzystywał w prawidłowy sposób. "Nie wiemy, czy da Vinci prowadził kolejne eksperymenty, by dokładniej zbadać tę kwestię. Ale sam fakt, że zajmował się tym na początku XVI wieku pokazuje, jak bardzo w przyszłość wybiegał jego sposób myślenia, stwierdza Gharib.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nie możemy bezpośrednio obserwować wczesnego wszechświata, ale być może będziemy w stanie obserwować go pośrednio, badając, w jaki sposób fale grawitacyjne z tamtej epoki wpłynęły na materię i promieniowanie, które obecnie widzimy, mówi Deepen Garg, student z Princeton Plama Physics Laboratory. Garg i jego promotor Ilya Dodin zaadaptowali do badań wszechświata technikę ze swoich badań nad fuzją jądrową.
      Naukowcy badali, w jaki sposób fale elektromagnetyczne rozprzestrzeniają się przez plazmę obecną w reaktorach fuzyjnych. Okazało się, że proces ten bardzo przypomina sposób rozprzestrzeniania się fal grawitacyjnych. Postanowili więc wykorzystać te podobieństwa.
      Fale grawitacyjne, przewidziane przez Alberta Einsteina w 1916 roku, zostały wykryte w 2015 roku przez obserwatorium LIGO. To zaburzenia czasoprzestrzeni wywołane ruchem bardzo gęstych obiektów. Fale te przemieszczają się z prędkością światła.
      Garg i Dodin, wykorzystując swoje spostrzeżenia z badań nad falą elektromagnetyczną w plazmie, opracowali wzory za pomocą których – jak mają nadzieję – uda się odczytać właściwości odległych gwiazd. W falach grawitacyjnych mogą być „zapisane” np. o gęstości materii, przez którą przeszły. Być może nawet uda się w ten sposób zdobyć dodatkowe informacje o zderzeniach gwiazd neutronowych i czarnych dziur.
      To miał być prosty, krótki, sześciomiesięczny program badawczy dla mojego studenta. Gdy jednak zaczęliśmy zagłębiać się w problem, okazało się, że niewiele o nim wiadomo i można na tym przykładzie wykonać pewne podstawowe prace teoretyczne, przyznaje Dodin.
      Naukowcy chcą w niedługiej przyszłości wykorzystać swoje wzory w praktyce. Zastrzegają, że uzyskanie znaczących wyników będzie wymagało sporo pracy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lekkie antyatomy mogą przebyć w Drodze Mlecznej duże odległości zanim zostaną zaabsorbowane, poinformowali na łamach Nature Physics naukowcy, którzy pracują przy eksperymencie ALICE w CERN-ie. Dodali oni do modelu dane na temat antyatomów helu wytworzonych w Wielkim Zderzaczu Hadronów. Pomoże to w poszukiwaniu cząstek antymaterii, które mogą brać swój początek z ciemnej materii.
      Fizycy potrafią uzyskać w akceleratorach cząstek lekkie antyatomy, jak antyhel czy antydeuter. Dotychczas jednak nie zaobserwowano ich w przestrzeni kosmicznej. Tymczasem z modeli teoretycznych wynika, że antyatomy, podobnie zresztą jak antyprotony, mogą powstawać zarówno w wyniku zderzeń promieniowania komicznego z materią międzygwiezdną, jak i podczas wzajemnej anihilacji cząstek antymaterii. Sygnałów takich poszukuje m.in. zbudowany przez CERN instrument AMS (Alpha Magnetic Spectrometer) zainstalowany na Międzynarodowej Kosmicznej.
      Jeśli jednak instrumenty naukowe zarejestrują lekkie antyatomy pochodzące z przestrzeni kosmicznej, skąd będziemy wiedzieli, że ich źródłem jest ciemna materia? Żeby to określić, naukowcy muszą obliczyć liczbę, a konkretne strumień pola, antyatomów, które powinny dotrzeć do instrumentu badawczego. Wartość ta zależy od źródła antymaterii, prędkości tworzenia antyatomów oraz ich anihilacji lub absorpcji pomiędzy źródłem powstania a instrumentem je rejestrującym. I właśnie ten ostatni element stał się przedmiotem badań naukowców skupionych wokół eksperymentu ALICE.
      Uczeni badali jak jądra antyhelu-3, który uzyskano w Wielkim Zderzaczu Hadronów, zachowują sią w kontakcie z materią. Uzyskane w ten sposób dane wprowadzili do publicznie dostępnego oprogramowania GALPROP, które symuluje rozkład cząstek kosmicznych, w tym antyjąder, w przestrzeni kosmicznej. Pod uwagę wzięli dwa scenariusze. W pierwszym z nich założyli, że źródłem antyhelu-3 są zderzenia promieniowania kosmicznego a materią międzygwiezdną, w drugim zaś, że są nim hipotetyczne cząstki ciemnej materii, WIMP (słabo oddziałujące masywne cząstki). W każdym z tych scenariuszy obliczali przezroczystość Drogi Mlecznej dla jądra antyhelu-3. Innymi słowy, sprawdzali, z jakim prawdopodobieństwem takie antyjądra mogą przelecieć przez Drogę Mleczną zanim zostaną zaabsorbowane.
      Dla modelu, w którym antyjądra pochodziły z WIMP przezroczystość naszej galaktyki wyniosła około 50%. Dla modelu interakcji promieniowania kosmicznego z materią międzygwiezdną wynosiła zaś od 25 do 90 procent, w zależności od energii antyjąder. To pokazuje, że w obu przypadkach antyjądra mogą przebyć olbrzymie odległości, liczone w kiloparsekach (1 kpc ≈ 3261 lat świetlnych), zanim zostaną zaabsorbowane.
      Jako pierwsi wykazaliśmy, że nawet jądra antyhelu-3 pochodzące z centrum galaktyki mogą dotrzeć w pobliże Ziemi. To oznacza, że ich poszukiwanie w przestrzeni kosmicznej jest bardzo dobrą metodą poszukiwania ciemnej materii, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN poinformował, że w przyszłym roku przeprowadzi o 20% mniej eksperymentów, a w roku bieżącym akcelerator zostanie wyłączony 28 listopada, 2 tygodnie wcześniej, niż planowano. Zmiany mają związek z niedoborami energii i rosnącymi jej kosztami. W ten sposób CERN chce pomóc Francji w poradzeniu sobie z problemami z dostępnością energii.
      CERN kupuje 70–75% energii z Francji. Gdy wszystkie akceleratory w laboratorium pracują, zużycie energii wynosi aż 185 MW. Sama infrastruktura Wielkiego Zderzacza Hadronów potrzebuje do pracy 100 MW.
      W związku ze zbliżającą się zimą we Francji wprowadzono plan zredukowania zużycia energii o 10%. Ma to pomóc w uniknięciu wyłączeń prądu. Stąd też pomysł kierownictwa CERN, by pomóc w realizacji tego planu. Ponadto rozpoczęto też prace nad zmniejszeniem zapotrzebowania laboratorium na energię. Podjęto decyzję m.in. o wyłączaniu na noc oświetlenia ulicznego, rozpoczęcia sezonu grzewczego o tydzień później niż zwykle oraz zoptymalizowania ogrzewania pomieszczeń przez całą zimę.
      Działania na rzecz oszczędności energii nie są w CERN niczym niezwykłym. Laboratorium od wielu lat pracuje nad zmniejszeniem swojego zapotrzebowania i w ciągu ostatniej dekady konsumpcję energii udało się ograniczyć o 10%. Było to możliwe między innymi dzięki zoptymalizowaniu systemów chłodzenia w centrum bazodanowym, zoptymalizowaniu pracy akceleratorów, w tym zmniejszenie w nich strat energii.
      W CERN budowane jest właśnie nowe centrum bazodanowe, które ma ruszyć pod koniec przyszłego roku. Od początku zostało ono zaprojektowane z myślą o oszczędności energii. Znajdą się tam m.in. systemy odzyskiwania ciepła generowanego przez serwery. Będzie ono wykorzystywane do ogrzewania innych budynków laboratorium. Zresztą już teraz ciepło generowane w jednym z laboratoriów CERN jest używane do ogrzewania budynków w pobliskiej miejscowości Ferney-Voltaire. Trwają też prace nad optymalizacją systemu klimatyzacji i wentylacji oraz nad wykorzystaniem energii fotowoltaicznej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Circular Collider (FCC) informowaliśmy na początku ubiegłego roku.
      The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.
      CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).
      Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.
      Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.
      Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.
      Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.
      Później instalacja ta zostanie rozebrana, a w jej miejscu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
      Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.
      Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.
      W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.
      Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...