
Raz materia, raz antymateria. I tak tryliony razy na sekundę
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582
« powrót do artykułu -
przez KopalniaWiedzy.pl
Doroczna konferencja fizyczna Recontres de Moriond przynosi kolejne – po łamaniu symetrii CP przez bariony – fascynujące informacje. Naukowcy pracujący przy eksperymencie CMS w CERN-ie donieśli o zaobserwowaniu w danych z Wielkiego Zderzacza Hadronów sygnałów, które mogą świadczyć o zaobserwowaniu najmniejszej cząstki złożonej. Uzyskane wyniki wskazują, że kwarki wysokie – najbardziej masywne i najkrócej istniejące ze wszystkich cząstek elementarnych – mogą na niezwykle krótką chwilę tworzyć parę z swoim odpowiednikiem w antymaterii (antykwarkiem wysokim) i tworzyć hipotetyczny mezon o nazwie toponium.
Model Standardowy, chociaż sprawdza się od dziesięcioleci, ma niedociągnięcia. Naukowcy próbują je wyjaśnić, poszukując dodatkowych, nieznanych obecnie, bozonów Higgsa. Właściwości takich – wciąż hipotetycznych – cząstek, mają być dość proste. Zakłada się, że powinny one oddziaływać z fermionami z siłą proporcjonalną do masy fermionu, a teorie postulujące istnienie dodatkowych bozonów Higgsa mówią, że powinny one łączyć się bardziej masywnymi kwarkami. Stąd też uwaga naukowców skupiona jest na kwarku wysokim. Ponadto, jeśli takie dodatkowe bozony Higgsa miałyby masę większą od 345 GeV – masa znanego nam bozonu Higgsa to 125 GeV – i rozpadałyby się na pary kwark wysoki-antykwark, to w Wielkim Zderzaczu Hadronów powinien pojawić się nadmiar sygnałów świadczących o produkcji takich par.
W eksperymencie CMS zauważono taki nadmiar, ale – co szczególnie przyciągnęło uwagę naukowców – zauważono go przy energiach stanowiących dolną granicę zakresu poszukiwań. To skłoniło fizyków pracujących przy CMS do wysunięcia hipotezy, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich znajdujących się w stanie quasi-związanym zwanym toponium.
Gdy rozpoczynaliśmy analizy, w ogólnie nie braliśmy pod uwagę możliwości zauważenia toponium. W analizie wykorzystaliśmy uproszczony model toponium. Hipoteza ta jest niezwykle ekscytująca, gdyż nie spodziewaliśmy się, że LHC zarejestruje toponium, mówi koordynator prac, Andreas Meyer z DESY (Niemiecki Synchrotron Elektronowy).
Co prawda nie można wykluczyć innych wyjaśnień zaobserwowanych zjawisk, ale z dotychczasowych badań wynika, że toponium w sposób wystarczający wyjaśnia zaobserwowany nadmiar sygnałów. Uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.], dodaje Meyer.
Jeśli uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas dorocznej konferencji fizycznej Recontres de Moriond naukowcy z CERN-u poinformowali o dokonaniu ważnego kroku na drodze ku zrozumieniu asymetrii pomiędzy materią a antymaterią. Podczas analizy olbrzymiej ilości danych z Wielkiego Zderzacza Hadronów uczeni znaleźli dowody na naruszenie symetrii CP przez bariony.
Symetria CP oznacza, że cząstka rozpada się identycznie jak jej antycząstka odbita w lustrze. Fakt, że we wszechświecie istnieje więcej materii niż antymaterii sugeruje, że łamanie symetrii CP jest zjawiskiem powszechnym. Po raz pierwszy zaobserwowano je w 1964 roku w przypadku kaonów (mezonów K). Wtedy zaobserwowano, że rozpadają się one nieco inaczej niż antykaony. Od tej pory naruszenie symetrii CP jest przedmiotem intensywnych badań, które mają wyjaśnić istniejącą nierównowagę między materią a antymaterią.
Naukowcy wiedzieli, że i w przypadku barionów powinno dochodzić do łamania symetrii CP, jednak dotychczas nie zaobserwowano tego zjawiska. Przyczyną, dla której zaobserwowanie naruszenia symetrii CP przez bariony zajęło tyle czasu jest różnica w sile tego zjawiska i ilości dostępnych danych. Potrzebowaliśmy urządzenia takiego jak Wielki Zderzacz Hadronów, zdolnego do wytworzenia wystarczająco dużej liczby barionów pięknych oraz ich antycząstek i potrzebowaliśmy maszyny zdolnej do znalezienia produktów ich rozpadu. Teraz, dzięki ponad 80 000 rozpadów barionów zauważyliśmy – po raz pierwszy dla tej klasy cząstek – łamanie symetrii CP, mówi rzecznik prasowy eksperymentu LHCb Vincenzo Vagnoni.
Już od kilku lat w rozpadach barionów pięknych Lambda b (Λb) znajdowano sygnały świadczące o istnieniu różnic w rozpadzie barionów i antybarionów. Bariony te są sześciokrotnie bardziej masywne od swojego kuzyna, protonu. Bariony, do których należy też neutron, są tą rodziną cząstek, która w znacznej mierze tworzy świat.
Teraz naukowcy pracujący przy eksperymencie LHCb zaobserwowali naruszenie symetrii CP w przypadku cząstek Lambda b (Λb), które zbudowane są z kwarka górnego, dolnego i kwarka b (kwarka pięknego). Szczegółowe analizy rozpadów Λb i anty-Λb wykazały różnice rzędu 5,2 odchyleń standardowych (5,2 sigma). Uzyskanie 5 sigma to poziom pozwalający na ogłoszenie odkrycia. Zatem po raz pierwszy z całą pewnością udało się stwierdzić, że wśród barionów istnieje łamanie symetrii CP.
Badania tego typu, chociaż ich wyniki są spodziewane, pozwalają lepiej poznać prawa rządzące fizyką. Istnienie naruszenia symetrii CP przewiduje sam Model Standardowy. Jednak naruszenie to jest o całe rzędy wielkości zbyt małe, by na gruncie Modelu Standardowego wyjaśnić obserwowaną asymetrię między materią i antymaterią. To zaś sugeruje, że istnieją źródła naruszenia symetrii CP, których nie przewiduje Model Standardowy. Im zatem lepiej poznamy to zjawisko, z tym większą dokładnością sprawdzimy Model Standardowy i będziemy mieli szansę na odkrycie zjawisk, których obecnie nie znamy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów przeprowadzono pierwsze badania, których celem było sprawdzenie, czy najcięższe cząstki elementarne – kwarki t (wysokie, prawdziwe) – zachowują się zgodnie ze szczególną teorią względności Einsteina. Eksperyment, wykonany przy użyciu CMS, miał sprawdzić prawdziwość kluczowego elementu teorii względności, czyli symetrii Lorenza. Zgodnie z nią prędkość światła jest identyczna we wszystkich kierunkach.
Istnieją pewne teorie, jak np. niektóre modele teorii strun, zgodnie z którymi przy wysokich energiach szczególna teoria względności nie działa i wyniki eksperymentu będą zależały od jego orientacji w czasoprzestrzeni. Ślady takiego złamania symetrii Lorenza powinny być tez widoczne przy niższych energiach, jakie są wykorzystywane w Wielkim Zderzaczu Hadronów.
Dlatego też naukowcy pracujący przy CMS postanowili poszukać złamania symterii Lorenza wykorzystując w tym celu pary kwarków t. W prowadzonych przez nich eksperymentach zależność ich wyniku od orientacji w czasoprzestrzeni oznaczałaby, że tempo wytwarzania par kwarków t w zderzeniach protonów zmieniałoby się wraz z porą dnia.
Skoro bowiem Ziemia obraca się wokół własnej osi, zmienia się położenie Wielkiego Zderzacza Hadronów, a zatem i kierunek strumieni protonów oraz orientacja miejsca, w którym dochodzi do zderzeń protonów i pojawiania się kwarków. Jeśli zatem symetria Lorenza zostaje złamana, to wraz ze zmianą pory dnia powinna zmieniać się liczba kwarków t pojawiających się w wyniku zderzeń.
Analiza danych z CMS z drugiej kampanii badawczej LHC (lata 2015–2018), wykazała, że tempo produkcji kwarków t w urządzeniu jest stałe. Symetria Lorenza nie jest więc naruszana, a szczególna teoria względności się broni. Uzyskane wyniki posłużą jako wstęp do poszukiwań naruszenia symetrii Lorenza w danych z trzeciej kampanii naukowej (2022–2026). Będzie można je wykorzystać też do bardziej szczegółowego przyjrzenia się innym procesom zachodzącym w akceleratorze, w których biorą udział bozon Higgsa czy bozony W i Z.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów (LHC) zarejestrowano najbardziej masywne hiperjądro antymaterii, jakie dotychczas odnotowano w tym akceleratorze. Badacze z eksperymentu ALICE wpadli na ślad antyhiperhelu-4, czyli odpowiednika hiperhelu-4 ze świata materii. Nieznaną dotychczas cząstkę zauważono w pochodzących ze zderzeń jąder ołowiu danych z 2018 roku.
Podczas zderzeń ciężkich jonów w LHC powstaje plazma kwarkowo-gluonowa. Ten egotyczny stan materii wypełniał wszechświat przez jedną milionową sekundy po Wielkim Wybuchu. Badanie tej plazmy pomaga nam zrozumieć, w jaki sposób z kwarków i gluonów powstały hadrony oraz dlaczego we współczesnym wszechświecie istnieje nierównowaga pomiędzy materią i antymaterią.
Hiperjądra to egzotyczne jądra powstałe z protonów, neutronów i hiperonów. Te ostatnie to niestabilne cząstki zawierające co najmniej jedne kwark dziwny, ale nie zawierające kwarka górnego i dolnego. Pierwsze hiperjądro odkryli w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego. Od ich zaobserwowania w promieniowaniu kosmicznym minęło zatem ponad 70 lat, a wciąż stanowią one tajemnicę dla nauki. Rzadko można je zaobserwować w naturze i bardzo trudno jest je badać w laboratorium.
W zderzeniach ciężkich jonów powstaje sporo hiperjąder, jednak dotychczas zaobserwowano trzy. Pierwszym był hipertryton i jego partner z antymaterii, a antyhipertryton. Hipertryton składał się z protonu, neutronu i hiperonu lambda, więc antyhipertryton składał się z antyprotonu, antyneutronu i antylambda.
Niecałe cztery miesiące temu informowaliśmy o znalezieniu najcięższego jądra antymaterii, antyhiperwodoru-4, zbudowanego z antyprotonu, dwóch antyneutronów i antyhiperonu lambda. Teraz naukowcy z ALICE poinformowali, że w 2018 roku podczas zderzeń jonów ołowiu przy energii 5,02 TeV pojawiły się dane wskazujące na powstanie antyhiperhelu-4. Jest ono złożone z dwóch antyprotonów, antyneutronu i antyhiperonu lambda. Poziom ufności obserwacji wynosi 3,5 sigma. To zbyt mało, by mówić o odkryciu, jednak na tyle dużo, że naukowcy uznali, iż warto o tym poinformować i prowadzić dalsze badania.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.