Tegoroczny Nobel z fizyki przyznany za badania nad klimatem i innymi systemami złożonymi
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Tachiony to hipotetyczne cząstki, poruszające się szybciej niż światło. Jeszcze do niedawna uważano, że ich istnienie nie mieści się w ramach szczególnej teorii względności. Jednak praca, opublikowana przez fizyków z Uniwersytetu Warszawskiego i University of Oxford dowodzi, że nie jest to opinia prawdziwa. Tachiony nie tylko nie są wykluczone przez szczególną teorię względności, ale pozwalają ją lepiej zrozumieć, dowodzą profesorowie Artur Ekert, Andrzej Dragan, doktorzy Szymon Charzyński i Krzysztof Turzyński oraz Jerzy Paczos, Kacper Dębski i Szymon Cedrowski.
Istniały trzy powody, dla których tachiony nie pasowały do teorii kwantowej. Po pierwsze, stan podstawowy pola tachionowego miał być niestabilny, a to oznaczało, że te poruszające się szybciej niż światło cząstki tworzyłyby się same z siebie. Po drugie, zmiana obserwatora miałaby prowadzić do zmiany liczby cząstek. Po trzecie, ich energia miałaby przyjmować wartości ujemne.
Z pracy opublikowanej na łamach Physical Review D dowiadujemy się, że problemy z tachionami miały wspólną przyczyną. Okazało się bowiem, że aby obliczyć prawdopodobieństwo procesu kwantowego, w którym udział biorą tachiony, trzeba znać zarówno jego przeszły stan początkowy, jak i końcowy. Gdy naukowcy uwzględnili to w teorii, znikają problemy związane z tachionami, a sama teoria okazała się matematycznie spójna.
Idea, że przyszłość może mieć wpływ na teraźniejszość zamiast teraźniejszości determinującej przyszłość nie jest w fizyce nowa. Jednak dotąd tego typu spojrzenie było co najwyżej nieortodoksyjną interpretacją niektórych zjawisk kwantowych, a tym razem do takiego wniosku zmusiła nas sama teoria. Żeby „zrobić miejsce” dla tachionów musieliśmy rozszerzyć przestrzeń stanów, mówi profesor Dragan.
Autorzy badań zauważają, że w wyniku rozszerzenia przez nich warunków brzegowych, pojawia się nowy rodzaj splątania kwantowego, w którym przeszłość miesza się z przeszłością. Ich zdaniem, tachiony to nie tylko możliwy, ale koniczny składnik procesu spontanicznego łamania symetrii odpowiedzialnego za powstanie materii. To zaś może oznaczać, że zanim symetria zostanie złamana, wzbudzenie pola Higgsa może przemieszczać się z prędkościami większymi od prędkości światła.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tegoroczną Nagrodę Nobla w dziedzinie fizjologii lub medycyny otrzymali Katalin Karikó i Drew Weissmann za odkrycia, które umożliwiły opracowanie efektywnych szczepionek mRNA przeciwko COVID-19. W uzasadnieniu przyznania nagrody czytamy, że prace Karikó i Wiessmanna w olbrzymim stopniu zmieniły rozumienie, w jaki sposób mRNA wchodzi w interakcje na naszym układem odpornościowym". Tym samym laureaci przyczynili się do bezprecedensowo szybkiego tempa rozwoju szczepionek, w czasie trwania jednego z największych zagrożeń dla ludzkiego życia w czasach współczesnych.
Już w latach 80. opracowano metodę wytwarzania mRNA w kulturach komórkowych. Jednak nie potrafiono wykorzystać takiego mRNA w celach terapeutycznych. Było ono nie tylko niestabilne i nie wiedziano, w jaki sposób dostarczyć je do organizmu biorcy, ale również zwiększało ono stan zapalny. Węgierska biochemik, Katalin Karikó, pracowała nad użyciem mRNA w celach terapeutycznych już od początku lat 90, gdy była profesorem na University of Pennsylvania. Tam poznała immunologa Drew Weissmana, którego interesowały komórki dendrytyczne i ich rola w układzie odpornościowym.
Efektem współpracy obojga naukowców było spostrzeżenie, że komórki dendrytyczne rozpoznają uzyskane in vitro mRNA jako obcą substancję, co prowadzi co ich aktywowania i unicestwienia mRNA. Uczeni zaczęli zastanawiać się, dlaczego do takie aktywacji prowadzi mRNA transkrybowane in vitro, ale już nie mRNA z komórek ssaków. Uznali, że pomiędzy oboma typami mRNA muszą istnieć jakieś ważne różnice, na które reagują komórki dendrytyczne. Naukowcy wiedzieli, że RNA w komórkach ssaków jest często zmieniane chemicznie, podczas gdy proces taki nie zachodzi podczas transkrypcji in vitro. Zaczęli więc tworzyć różne odmiany mRNA i sprawdzali, jak reagują nań komórki dendrytyczne.
W końcu udało się stworzyć takie cząsteczki mRNA, które były stabilne, a po wprowadzeniu do organizmu nie wywoływały reakcji zapalnej. Przełomowa praca na ten temat ukazała się w 2005 roku. Później Karikó i Weissmann opublikowali w 2008 i 2010 roku wyniki swoich kolejnych badań, w których wykazali, że odpowiednio zmodyfikowane mRNA znacząco zwiększa produkcję protein. W ten sposób wyeliminowali główne przeszkody, które uniemożliwiały wykorzystanie mRNA w praktyce klinicznej.
Dzięki temu mRNA zainteresowały się firmy farmaceutyczne, które zaczęły pracować nad użyciem mRNA w szczepionkach przeciwko wirusom Zika i MERS-CoV. Gdy więc wybuchła pandemia COVID-19 możliwe stało się, dzięki odkryciom Karikó i Weissmanna, oraz trwającym od lat pracom, rekordowo szybkie stworzenie szczepionek.
Dzięki temu odkryciu udało się skrócić proces, dzięki czemu szczepionkę podajemy tylko jako stosunkowo krótką cząsteczkę mRNA i cały trik polegał na tym, aby ta cząsteczka była cząsteczką stabilną. Normalnie mRNA jest cząsteczką dość niestabilną i trudno byłoby wyprodukować na ich podstawie taką ilość białka, która zdążyłaby wywołać reakcję immunologiczną w organizmie. Ta Nagroda Nobla jest m.in. za to, że udało się te cząsteczki mRNA ustabilizować, podać do organizmu i wywołują one odpowiedź immunologiczną, uodparniają nas na na wirusa, być może w przyszłości bakterie, mogą mieć zastosowanie w leczeniu nowotworów, powiedziała Rzeczpospolitej profesor Katarzyna Tońska z Uniwersytetu Warszawskiego.
Myślę, że przed nami jest drukowanie szczepionek, czyli dosłownie przesyłanie sekwencji z jakiegoś ośrodka, który na bieżąco śledzi zagrożenia i na całym świecie produkcja już tego samego dnia i w ciągu kilku dni czy tygodni gotowe preparaty dla wszystkich. To jest przełom. Chcę podkreślić, że odkrycie noblistów zeszło się z możliwości technologicznymi pozwalającymi mRNA sekwencjonować szybko, tanio i dobrze. Bez tego odkrycie byłoby zawieszone w próżni, dodał profesor Rafał Płoski z Warszawskiego Uniwersytetu Medycznego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Argentynie niektórzy miłośnicy piwa wsypują do kufla fistaszki. Te najpierw toną, później zaś unoszą się na powierzchnię, a następnie znowu toną i znowu się wynurzają. Fizyka fistaszków tańczących w piwie to tytuł artykułu naukowego, w którym akademicy z Niemiec, Francji i Wielkiej Brytanii opisują i wyjaśniają ten fenomen z punktu widzenia fizyki. Dzięki przeprowadzonej przez nich serii eksperymentów możemy poznać tajemnicę interakcji orzeszków z piwem i przy najbliższej okazji pochwalić się znajomym, że wiemy, na czym ona polega.
Orzeszki są cięższe od piwa, więc w nim toną. Jednak na dnie stają się miejscami nukleacji (zarodkowania), gromadzenia się bąbelków dwutlenku węgla obecnych w piwie. A gdy bąbelków zgromadzi się wystarczająco dużo, orzeszek zyskuje pływalność i podąża do góry. Gdy dociera na powierzchnię, przyczepione do niego bąbelki ulatniają się, a proces ten ułatwia obracanie się orzeszka. Fistaszek traci pływalność i znowu tonie. Proces powtarza się dopóty, dopóki napój jest na tyle nasycony gazem, by dochodziło do zarodkowania.
Badający to zjawisko naukowcy zauważyli, że przyczepiające się do orzeszka bąbelki nie są tymi samymi, które samoistnie unoszą się w górę w piwie. Powierzchnia orzeszka powoduje tworzenie się bąbelków, które rosną, gromadzą się i w końcu nadają mu pływalność.
W rozważanym przypadku do nukleacji gazu, czyli pojawienia się bąbelków, może dojść w samym piwie, na szkle naczynia oraz na orzeszku. Zajmujący się tym poważnym problemem międzynarodowy zespół wyliczył, że z energetycznego punktu widzenia najbardziej korzystna jest nukleacja gazu na orzeszku, a najmniej korzystne jest tworzenie się bąbelków w samym piwie. Dlatego też tak łatwo bąbelki gromadzą się wokół fistaszka i go wypychają. Uczeni wyliczyli nawet, że idealny promień bąbelka przyczepionego do orzeszka wynosi mniej niż 1,3 milimetra.
Można się oczywiście zżymać, że naukowcy tracą pieniądze podatników na niepoważne badania. Nic jednak bardziej mylnego. Tańczące w piwie fistaszki pozwalają lepiej zrozumieć działanie zarówno przyrody, jak i niektóre procesy przemysłowe. To, co dzieje się w orzeszkiem w piwie jest bardzo podobne do zjawisk zachodzących w czasie procesu flotacji, wykorzystywanego na przykład podczas oddzielania rud minerałów, recyklingu makulatury czy oczyszczania ścieków.
Badacze zapowiadają, że nie powiedzieli jeszcze ostatniego słowa. Mają bowiem zamiar kontynuować swoje prace, używając przy tym różnych orzeszków i różnych piw.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fizyka zajmuje się zróżnicowanym zakresem badań, od bardzo przyziemnych, po niezwykle abstrakcyjne. Koreańsko-niemiecki zespół badawczy, na którego czele stał Wenjing Lyu postanowił przeprowadzić jak najbardziej przyziemne badania, a wynikiem jego pracy jest artykuł pt. „Eksperymentalne i numeryczne badania piany na piwie”.
Naukowcy zajęli się odpowiedzią na wiele złożonych pytań dotyczących dynamiki tworzenia się piany na piwie, co z kolei może prowadzić do udoskonalenia metod warzenia piwa czy nowej architektury dysz, przez które piwo jest nalewane do szkła. Tworzenie się pianki na piwie to skomplikowana gra pomiędzy składem samego piwa, naczynia z którego jest lane a naczyniem, do którego jest nalewane. Naukowcy, browarnicy i miłośnicy piwa poświęcili tym zagadnieniom wiele uwagi. Autorzy najnowszych badań skupili się zaś na opracowaniu metody, która pozwoli najtrafniej przewidzieć jak pianka się utworzy i jakie będą jej właściwości.
Piana na piwie powstaje w wyniku oddziaływania gazu, głównie dwutlenku węgla, wznoszącego się ku górze. Tworzącymi ją składnikami chemicznymi są białka brzeczki, drożdże i drobinki chmielu. Pianka powstaje w wyniku olbrzymiej liczby interakcji chemicznych i fizycznych. Jest on cechą charakterystyczną piwa. Konsumenci definiują ją ze względu na jej stabilność, jakość, trzymanie się szkła, kolor, strukturę i trwałość. Opracowanie dokładnego modelu formowania się i zanikania pianki jest trudnym zadaniem, gdyż wymaga wykorzystania złożonych modeli numerycznych opisujących nieliniowe zjawiska zachodzące w pianie, czytamy w artykule opisującym badania.
Naukowcy wspominają, że wykorzystali w swojej pracy równania Reynoldsa jako zmodyfikowane równania Naviera-Stokesa (RANS), w których uwzględnili różne fazy oraz przepływy masy i transport ciepła pomiędzy tymi masami. Liu i jego zespół wykazali na łamach pisma Physics of Fluids, że ich model trafnie opisuje wysokość pianki, jej stabilność, stosunek ciekłego piwa do pianki oraz objętość poszczególnych frakcji pianki.
Badania prowadzono we współpracy ze startupem Einstein 1, który opracowuje nowy system nalewania piwa. Magnetyczna końcówka jest w nim wprowadzana na dno naczynia i dopiero wówczas rozpoczyna się nalewanie piwa, a w miarę, jak płynu przybywa, końcówka wycofuje się. Naukowcy zauważyli, że w systemie tym pianka powstaje tylko na początku nalewania piwa, a wyższa temperatura i ciśnienie zapewniają więcej piany. Po fazie wstępnej tworzy się już sam płyn. Tempo opadania piany zależy od wielkości bąbelków. Znika ona mniej więcej po upływie 25-krotnie dłuższego czasu, niż czas potrzebny do jej formowania się.
W następnym etapie badań naukowcy będą chcieli przyjrzeć się wpływowi końcówki do nalewania na proces formowania się piany i jej stabilność.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tegoroczna Nagroda Nobla w dziedzinie fizjologii lub medycyny została przyznana Svante Pääbo za odkrycia dotyczące ludzkiej ewolucji oraz genomu wymarłych homininów. Pääbo jest szwedzkim genetykiem, specjalistą od genetyki ewolucyjnej i jednym z najwybitniejszych żyjących badaczy ewolucji człowieka. Zsekwencjonował DNA neandertalczyka, w 2010 roku ogłosił odkrycie nieznanego wcześniej gatunku człowieka, denisowianina.
Dzięki swoim pionierskim badaniom Svante Pääbo dokonał czegoś, co wydawało się niemożliwe: zsekwencjonował genom neandertalczyka, wymarłego krewniaka człowieka współczesnego. Dokonał też sensacyjnego odkrycia nieznanego wcześniej hominina, denisowianina. Pääbo zauważył też, że już po wyjściu człowieka z Afryki, przed około 70 000 laty doszło do wymiany genów pomiędzy tymi obecnie wymarłymi homininami, a H. sapiens. Ten przepływ genów do człowieka współczesnego do dzisiaj wywiera na nas wpły, ma na przykład znaczenie dla reakcji naszego układu odpornościowego na infekcje, czytamy w uzasadnieniu Komitetu Noblowskiego.
Komitet podkreślił, że nowatorskie badania prowadzone przez Szweda doprowadziły do powstania nowej gałęzi nauki – paleogenomiki. O pracy wybitnego uczonego niejednokrotnie informowaliśmy na łamach KopalniWiedzy.
Już na początku swojej kariery naukowej Pääbo zastanawiał się nad możliwością wykorzystania nowoczesnych metod genetyki do badania genomu neandertalczyków. Szybko jednak zdał sobie sprawę z tego, że po tysiącach lat pozostaje niewiele materiału genetycznego, a ten, który uda się uzyskać, jest silnie zanieczyszczony przez bakterie i współczesnych ludzi. Pääbo, będąc studentem Allana Wilsona, pioniera biologii ewolucyjnej, zaczął pracować nad metodami badania DNA neandertalczyków. Gdy w 1990 roku został zatrudniony na Uniwersytecie w Monachium, kontynuował swoje zainteresowania. Rozpoczął od prób analizy mitochondrialnego DNA (mtDNA). mtDNA jest bardzo małe i zawiera niewielką część informacji genetycznej, ale występuje w olbrzymiej liczbie kopii, co zwiększało szanse na sukces. W końcu w 1997 roku mógł ogłosić sukces. Z liczącego 40 000 lat kawałka kości udało się uzyskać mtDNA. Tym samym po raz pierwszy w historii dysponowaliśmy genomem naszego wymarłego krewniaka. Porównanie z genomem H. sapiens i szympansem pokazało, że H. neanderthalensis był genetycznie odmiennym gatunkiem.
Uczony nie spoczął jednak na laurach. Z czasem przyjął propozycję stworzenia Instytutu Antropologii Ewolucyjnej im. Maxa Plancka w Lipsku. W 2009 roku zaprezentował pierwszą, składającą się z ponad 3 miliardów par zasad, sekwencję DNA neandertalczyka. Dzięki temu dowiedzieliśmy się, że ostatni przodek H. neanderthalensis i H. sapiens żył około 800 000 lat temu.
Uczony rozpoczął projekt, w ramach którego porównywał związki łączące neandertalczyków i ludzi współczesnych żyjących w różnych częściach świata. Okazało się, że sekwencje genetyczne neandertalczyków są bardziej podobne do ludzi żyjących obecnie na terenie Europy i Azji niż do mieszkańców Afryki, a to wskazywało na krzyżowanie się obu gatunków.
W 2010 roku naukowiec dokonał kolejnego znaczącego odkrycia. Badania nad fragmentem kości znalezionym w Denisowej Jaskini na Syberii, przyniosły kolejną sensację. Okazało się, że kość należała do nieznanego wcześniej gatunku człowieka. Tegoroczny noblista zaczął zgłębiać temat i stwierdził, że pomiędzy H. sapiens a denisowianami również dochodziło do przepływu genów. Związki pomiędzy oboma naszymi gatunkami najwyraźniej widoczne są w Azji Południowo-Wschodniej. Nawet 6% genomu tamtejszych ludzi to dziedzictwo denisowian.
Odkrycia Pääbo pozwoliły nam na nowo zrozumieć naszą ewolucję. Gdy H. sapiens opuścił Afrykę, w Eurazji istniały co najmniej dwie wymarłe obecnie populacje homininów. Neandertalczycy mieszkali w zachodniej Eurazji, a denisowianie zajmowali wschodnią część kontynentu. Podczas migracji z Afryki H. sapiens nie tylko napotkał i krzyżował się z neandertalczykami, ale również z denisowianami, piszą przedstawiciele Komitetu Noblowskiego.
Paleogenomika, która powstała dzięki badaniom Svante Pääbo, pomaga nam lepiej zrozumieć naszą własną historię. Dowiedzieliśmy się, że krzyżowanie się z wymarłymi gatunkami człowieka wciąż wpływa na fizjologię współczesnych ludzi. Odziedziczona pod denisowianach wersja genu EPAS1 pozwoliła H. sapiens przetrwać na wysoko położonych terenach i zasiedlić Tybet, a neandertalskie geny wpływają na pracę naszego układu odpornościowego.
Dzięki Pääbo mamy szansę dowiedzieć się, dlaczego nasz gatunek odniósł sukces ewolucyjny. Neandertalczycy również żyli w grupach, mieli duże mózgi, używali narzędzi, jednak ich kultura i technologia rozwijały się bardzo powoli. Przed odkryciami dokonanymi przez Svante Pääbo nie znaliśmy różnic genetycznych pomiędzy nimi a nami.
Svante Pääbo urodził się w 1955 roku w Sztokholmie. Jego matką jest estońska chemik Karin Pääbo , a ojcem biochemik Sune Bergström, który w 1982 roku otrzymał Nagrodę Nobla w fizjologii lub medycynie. W 1986 roku Svante obronił doktorat na Uniwersytecie w Uppsali. Otrzymał go za badania nad wpływem proteiny E19 adenowirusów na układ odpornościowy. W 2007 roku magazyn Time uznał go za jednego ze 100 najbardziej wpływowych ludzi na świecie. Jest laureatem licznych nagród. W 2014 roku napisał książkę „Neandertalczyk. W poszukiwaniu zaginionych genomów”.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.