Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wiemy, dlaczego stare masywne galaktyki przestały tworzyć nowe gwiazdy

Rekomendowane odpowiedzi

Naukowcom z University of Massachusetts w Amherst udało się rozwiązać jedną z podstawowych zagadek astronomii, na którą odpowiedzi szukano od lat. Dzięki ich pracy, opublikowanej na łamach Nature, wiemy, dlaczego niektóre z najstarszych i najbardziej masywnych galaktyk bardzo szybko przestały być aktywne i nie pojawiają się w nich już nowe gwiazdy.

Najbardziej masywne galaktyki we wszechświecie powstały niezwykle szybko, krótko po Wielkim Wybuchu sprzed niemal 14 miliardów lat. Jednak z jakiegoś powodu przestały działać. Już nie powstają w nich nowe gwiazdy, mówi profesor Kate Whitaker. To właśnie formowanie się nowych gwiazd jest jednym z procesów umożliwiających wzrost galaktyk. Od dawna wiemy, że wczesne masywne galaktyki stały się nieaktywne, ale dotychczas nie wiedzieliśmy dlaczego.

Zespół Whitaker połączył dane z teleskopu Hubble'a i ALMA. Pierwszy z nich obserwuje wszechświat w zakresie od ultrafioletu do bliskiej podczerwieni – w tym część zakresu widzialnego dla ludzkiego oka – drugi zaś pracuje w spektrum pomiędzy 0,32 do 3,6 mm, którego nasze oczy nie widzą.

Naukowcy poszukiwali za pomocą ALMA niewielkich ilości zimnego gazu, który stanowi główne źródło energii dla procesu tworzenia się nowych gwiazd. We wczesnym wszechświecie, a więc i w tych galaktykach, było bardzo dużo tego gazu. Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać", spekulowali uczeni. Jednak okazało się, że w badanych galaktykach pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.

W następnym etapie badań naukowcy chcą sprawdzić, jak bardzo zagęszczony jest ten pozostały w starych galaktykach gaz i dlaczego znajduje się wyłącznie w pobliżu ich centrum.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, KopalniaWiedzy.pl napisał:

Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać

Hm, czy to nie jest trochę wbrew obserwacjom? Nie ma nowych gwiazd bo nie ma z czego ich robić - to moja pierwsza myśl po przeczytaniu nagłówka.

2 godziny temu, KopalniaWiedzy.pl napisał:

pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.

Czyli jednak NIE wiemy dlaczego, Bo może być tak, albo tak... różnie może być. :D Coś się zgubiło w tłumaczeniu? A może trochę zrzędzę dzisiaj*?

 

*) dzisiaj?! zawsze!

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jak przeczytałem tytuł to od razu pomyślałem, że musiały wyrzucić gaz z układu w jedną (na zewnątrz) albo w drugą stronę (do czarnej dziury), ewentualnie go zużyć. Jeżeli zużyły to powinno zostać sporo gwiezdnych szczątków w postaci gwiazdowych czarnych dziur albo białych karłów i gwiazd neutronowych. Wydaje mi się mało prawdopodobne, żeby procesy gwiazdotwórcze zanikły z jakiś powodów oraz nie zachodził aktywnie proces kolapsów grawitacyjnych obłoków gazowych. Skala marnotrawstwa energii we Wszechświecie przeraża :)

Pamiętam, że jest nierozwiązana, zdaje się, kwestia wzrostu supermasywnych czarnych dziur (SMBH). Być może jest jakiś związek?

Inna kwestia jest taka, że z tego, co widzę, mowa o obiektach bardzo odległych i starych - tak, właśnie przeczytałem artykuł :) Mogły wtedy panować trochę inne warunki i na przykład średnia gęstość ośrodka międzygwiezdnego mogła być znacznie większa. Z załączonego zdjęcia wynika, że na dodatek galaktyka jest soczewkowana grawitacyjnie przez gromadę galaktyk.

Zawsze wydawało mi się, że galaktyki eliptyczne tworzą mniej nowych gwiazd, ale to może tylko złudzenie. Nie chce mi się teraz sprawdzać, jakby co Astro mnie kulturalnie poprawi :) Są podejrzanie czerwone i mają sporo starych, czerwonych gwiazd w centrum oraz nie mają dysków. Galaktyki eliptyczne są pozostałościami po kolizjach dwóch lub większej ilości galaktyk spiralnych.

Galaktyki spiralne natomiast są tak okazałe ze względu na dyski, w których właśnie tworzą się duże ilości masywnych i jasnych gwiazd wraz z falą zwiększonej gęstości gazu międzygwiezdnego. Nie bez powodu ramiona się niebieskie i bardzo jasne. Kiedyś naklepałem kilka tysięcy galaktyk w Galaxy Zoo, gdzie można klasyfikować galaktyki :)

1200px-M101_hires_STScI-PRC2006-10a.jpg

 

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
15 hours ago, Astro said:

Zdecydowanie nie jest to złudzenie. Pamiętaj też, że w Galaktyce nie brakuje gwiazd starych, a nawet bardzo starych (patrz np. gromady kuliste).

Pamiętam, pamiętam :) Gromady kuliste są ciekawe! Kiedyś chwilę dyskutowałem z kimś o wiadomości Arecibo wysłanej kilka dekad temu w kierunku M13. Oszacowałem jakie jest zagęszczenie gwiazd w M13. Nie pamiętam teraz dokładnie, ale to przechodzi ludzkie pojęcie! Niebo się musi świecić w nocy jak choinka, o ile tam są jakieś planety w ogóle :) Właśnie zerknąłem na wiki, kilkaset tysięcy gwiazd stłoczonych w kuli o promieniu 84 lat świetlnych!

Skoro jesteś już na wątku, to przy okazji, znamy jakieś wąskopasmowe transmisje radiowe pochodzenia naturalnego? Kwazary, pulsary, magnetary, blazary, insze radiozary? :) Wiem, że natura lubi szeroko pasmowe sygnały. Pytam się w kontekście naturalnego kandydata dla sygnału Wow!

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 25.09.2021 o 11:17, cyjanobakteria napisał:

Niebo się musi świecić w nocy jak choinka, o ile tam są jakieś planety w ogóle :) Właśnie zerknąłem na wiki, kilkaset tysięcy gwiazd stłoczonych w kuli o promieniu 84 lat świetlnych!

To wciąż świetlny rok sześcienny na jedną gwiazdę. Bliskich planet może być sporo.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 hours ago, peceed said:

To wciąż świetlny rok sześcienny na jedną gwiazdę. Bliskich planet może być sporo.

Nie chciało mi się liczyć, ale tak mniej więcej wychodzi. Pochopne wnioski jednak wyciąga ten, kto sądzi, że umniejsza to wspomnianej gromadzie kulistej :) Dla porównania w okolicy Słońca w promieniu 50 lat świetlnych jest tylko 130-parę gwiazd, a jest to aż to 125 000 lat sześciennych. Za to w M13 jest kilkaset tysięcy gwiazd (!) w kuli o promieniu około 84 lat świetlnych, czyli 600 000 lat sześciennych. Szacowana masa to około 600 000 mas Słońca, więc miej respekt Peceed :) Dla porównania w kuli o średnicy 4 lat świetlnych, czyli mniej więcej tyle, co do Alfa Centauri, były by 64 gwiazdy wielkości Słońca! :)

Tak wyglądają okolice Słońca:

50lys.gif

A tak M13:

m13-xlarge_web.jpg?itok=JLaiobe3

 

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W dobie niezmiennie ciekawych odkryć, szczególnie związanych z JWST, wracamy do fundamentalnych pytań dotyczących początków Wszechświata. W odległości 12,8 miliardów lat świetlnych od Ziemi znajduje się czarna dziura o masie około miliarda mas Słońca. Powstała zatem w czasie krótszym niż miliard lat po Wielkim Wybuchu. Dziurę odkryto przed dwoma laty, a dzięki teleskopowi Chandra wiemy, że zasila ona kwazar RACS J0320-35. Chandra pozwolił też stwierdzić, że czarna dziura rośnie w rekordowo szybkim tempie.
      Gdy materia opada na czarną dziurę, jest podgrzewana i pojawia się intensywne promieniowanie w szerokim zakresie. Promieniowanie to wywiera ciśnienie na opadający materiał. Gdy tempo opadania materii osiągnie wartość krytyczną, ciśnienie promieniowania równoważy grawitację czarnej dziury i materiał nie może już na nią szybko opadać. Ta wartość krytyczna nazywana została granicą Eddingtona.
      Naukowcy uważają obecnie, że czarne dziury przybierające na masie wolniej niż pozwala granica Eddingtona muszą rozpocząć swoje istnienie jako obiekty o około 10 000 mas Słońca lub więcej, by w ciągu miliarda lat po Wielkim Wybuchu osiągnąć masę miliard razy większą od naszej gwiazdy. Żeby jednak czarna dziura rozpoczęła swoje istnienie od tak dużej masy, musiałaby powstać w wyniku rzadko zachodzącego procesu zapadnięcia się wielkiej chmury gęstego gazu zawierającego niezwykle małe ilości pierwiastków cięższych od helu.
      Jeśli jednak RACS J0320-35 rzeczywiście rośnie w tempie 2,4-krotnie przekraczającym granicę Eddingtona – jak na to wskazują badania – i jeśli proces ten zachodzi przez dłuższy czas, to czarna dziura mogła powstać w bardziej typowy sposób, wskutek zapadnięcia się masywnej gwiazdy o masie nie przekraczającej 100 Słońc.
      Znając masę czarnej dziury i tempo jej rośnięcia, naukowcy są w stanie obliczyć, jaką miała masę, gdy powstała. To z kolei pozwala na testowanie różnych teorii dotyczących powstawania czarnych dziur. W przypadku RACS J0320-35 naukowcy porównali modele teoretyczne z danymi z Chandry dotyczącymi promieniowania rentgenowskiego. Okazało się, że uzyskane przez teleskop spektrum promieniowania rentgenowskiego wskazuje, że czarna dziura rośnie szybciej niż granica Eddingtona, a znajduje to potwierdzenie w spektrum w zakresie widzialnym i podczerwieni.
      Tego typu badania przybliżają nas do rozwiązania zagadki dotyczącej powstania pierwszego pokolenia czarnych dziur. Inną tajemnicą, do rozwikłania której się zbliżyliśmy, było zauważenie dżetów cząstek uciekających od czarnej dziury z prędkością światła. Tego typu dżety są rzadko obserwowane w przypadku kwazarów, a to może oznaczać, że szybko rosnąca czarna dziura może mieć z nimi coś wspólnego.
      Artykuł X-Ray Investigation of Possible Super-Eddington Accretion in a Radio-loud Quasar at z = 6.13 został opublikowany na łamach The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W dobie niezmiennie ciekawych odkryć, szczególnie związanych z JWST, wracamy do fundamentalnych pytań dotyczących początków Wszechświata. W odległości 12,8 miliardów lat świetlnych od Ziemi znajduje się czarna dziura o masie około miliarda mas Słońca. Powstała zatem w czasie krótszym niż miliard lat po Wielkim Wybuchu. Dziurę odkryto przed dwoma laty, a dzięki teleskopowi Chandra wiemy, że zasila ona kwazar RACS J0320-35. Chandra pozwolił też stwierdzić, że czarna dziura rośnie w rekordowo szybkim tempie.
      Gdy materia opada na czarną dziurę, jest podgrzewana i pojawia się intensywne promieniowanie w szerokim zakresie. Promieniowanie to wywiera ciśnienie na opadający materiał. Gdy tempo opadania materii osiągnie wartość krytyczną, ciśnienie promieniowania równoważy grawitację czarnej dziury i materiał nie może już na nią szybko opadać. Ta wartość krytyczna nazywana została granicą Eddingtona.
      Naukowcy uważają obecnie, że czarne dziury przybierające na masie wolniej niż pozwala granica Eddingtona muszą rozpocząć swoje istnienie jako obiekty o około 10 000 mas Słońca lub więcej, by w ciągu miliarda lat po Wielkim Wybuchu osiągnąć masę miliard razy większą od naszej gwiazdy. Żeby jednak czarna dziura rozpoczęła swoje istnienie od tak dużej masy, musiałaby powstać w wyniku rzadko zachodzącego procesu zapadnięcia się wielkiej chmury gęstego gazu zawierającego niezwykle małe ilości pierwiastków cięższych od helu.
      Jeśli jednak RACS J0320-35 rzeczywiście rośnie w tempie 2,4-krotnie przekraczającym granicę Eddingtona – jak na to wskazują badania – i jeśli proces ten zachodzi przez dłuższy czas, to czarna dziura mogła powstać w bardziej typowy sposób, wskutek zapadnięcia się masywnej gwiazdy o masie nie przekraczającej 100 Słońc.
      Znając masę czarnej dziury i tempo jej rośnięcia, naukowcy są w stanie obliczyć, jaką miała masę, gdy powstała. To z kolei pozwala na testowanie różnych teorii dotyczących powstawania czarnych dziur. W przypadku RACS J0320-35 naukowcy porównali modele teoretyczne z danymi z Chandry dotyczącymi promieniowania rentgenowskiego. Okazało się, że uzyskane przez teleskop spektrum promieniowania rentgenowskiego wskazuje, że czarna dziura rośnie szybciej niż granica Eddingtona, a znajduje to potwierdzenie w spektrum w zakresie widzialnym i podczerwieni.
      Tego typu badania przybliżają nas do rozwiązania zagadki dotyczącej powstania pierwszego pokolenia czarnych dziur. Inną tajemnicą, do rozwikłania której się zbliżyliśmy, było zauważenie dżetów cząstek uciekających od czarnej dziury z prędkością światła. Tego typu dżety są rzadko obserwowane w przypadku kwazarów, a to może oznaczać, że szybko rosnąca czarna dziura może mieć z nimi coś wspólnego.
      Artykuł X-Ray Investigation of Possible Super-Eddington Accretion in a Radio-loud Quasar at z = 6.13 został opublikowany na łamach The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedługo po tym, jak Teleskop Jamesa Webba rozpoczął pracę, naukowcy zauważyli na przesłanych przez niego zdjęciach coś niezwykłego – niewielkie czerwone kropki. Niezwykłe obiekty były wyraźne i było ich całkiem sporo. Od razu stało się jasne, że Webb zauważył coś, czego nie widział Hubble. Kolejne spływające dane pokazały, że obiekty są kompaktowe i znajdują się w odległości 12 miliardów lat świetlnych. A analizy widma światła nie pasowały do żadnych znanych nam obiektów. Astronomowie musieli więc szukać poza standardowymi wyjaśnieniami.
      Jedną z pierwszych hipotez było stwierdzenie, że małe czerwone kropki to galaktyki o niezwykle dużym zagęszczeniu gwiazd, a silnie czerwona barwa pochodzi od otaczających je chmur pyłu. Jeśli zamkniemy Układ Słoneczny w sześcianie o boku 1 roku świetlnego, to znajdzie się w nim 1 gwiazda – Słońce. Zgodnie z nową hipotezą, w czerwonych kropkach w takim sześcianie miały istnieć setki tysięcy gwiazd. Byłoby to niezwykle duże zagęszczenie. Najbardziej gęstym regionem Drogi Mlecznej jest jej centrum. Tam w sześcianie o boku 1 roku świetlnego znaleźlibyśmy około tysiąca gwiazd. Istnienie zagęszczenia gwiazd takiego, jakie postulowano dla czerwonych kropek oznaczałoby, że gwiazdy powstają również w sposób, jakiego wcześniej nie obserwowaliśmy.
      Wkrótce jednak zaproponowano kolejne wyjaśnienie: czerwone kropki miały być aktywnymi jądrami galaktyk (AGN) otoczonymi chmurami pyłu. AGN-y emitują duże ilości energii, która wytwarzania jest podczas opadania materiału na supermasywną czarną dziurę. Jednak widmo spektroskopowe kropek nie zgadzało się z widmem znanych AGN, ponadto ta hipoteza wymagałaby istnienia supermasywnych czarnych dziur, a biorąc pod uwagę liczbę czerwonych kropek, dziur musiałoby być zaskakująco wiele.
      Anna de Graaff z Instytutu Astronomii im. Maxa Plancka w Heidelbergu i jej międzynarodowy zespół zaangażowali do pracy nową aplikację RUBIES (Red Unknowns: Bright Infrared Extragalactic Survey).
      Pomiędzy styczniem a grudniem ubiegłego roku aplikacja wykorzystała niemal 60 godzin czasu obserwacyjnego Webba do uzyskania widm 4500 galaktyk. Wśród nich znaleziono 35 czerwonych kropek. Najważniejszym, najbardziej obiecującym znaleziskiem było zauważenie obiektu, który nazwano „Klifem”. Znajduje się on 11,9 miliardów lat świetlnych od nas, a jego wyróżniającą się cechą był wyraźny wzrost promieniowania w zakresie ultrafioletu.
      Sygnał ten był tak silny, że wymagał nowej interpretacji czerwonych kropek. Ekstremalne właściwości Klifu zmusiły nas do powrotu do tablicy i opracowania nowych modeli, przyznaje de Graaff. Co prawda podobne wzrosty promieniowania UV widoczne są w widmach galaktyk zawierających dużo bardzo gorących młodych gwiazd, jednak nie są one tak gwałtowne. Widać je również w widmach samych młodych gwiazd. I – co było niezmiernie zaskakujące – dane z czerwonych kropek wskazywały, że są one bardziej podobne do pojedynczej gwiazdy niż do galaktyki.
      Naukowcy opracowali model, które nazwali „gwiazdą czarnej dziury” (BH*). BH* nie są technicznie gwiazdami, gdyż w ich wnętrzu nie zachodzi fuzja jądrowa, ponadto tworzący je gaz ulega znacznie bardziej gwałtownym turbulencjom niż w gwiazdach. Wedle tej koncepcji BH* to AGN-y, czarne dziury, ale otoczone nie pyłem, a gęstą powłoką wodoru. Gaz gwałtownie opada do czarnej dziury, dochodzi do jego rozgrzania tak, że z zewnątrz całość przypomina gwiazdę.
      Jeśli badacze mają rację, i Teleskop Webba odkrył dużą populację supermasywnych czarnych dziur otoczonych gazem, wyjaśniałoby to, mechanizm powstawania supermasywnych czarnych dziur we wczesnym wszechświecie. Bo sygnały istnienia takich dziur odkryto już wcześniej, problemem zaś był mechanizm ich powstawania.
      Warto jednak zwrócić uwagę, że hipoteza Graaff i jej zespołu jest nowa. Badania zostały na razie opublikowane w repozytorium arXiv, a nie w recenzowanym piśmie naukowym. I mimo, że dostarcza ona pożądanego wyjaśnienia powstawania supermasywnych czarnych dziur we wczesnym wszechświecie, nie została jeszcze zweryfikowana przez środowisko naukowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szybkie rozbłyski radiowe (FRB) wciąż stanowią zagadkę. Astronomowie ciągle nie wiedzą, co jest ich źródłem, jak powstają, często nie potrafią też określić położenia źródła. Niedawno dzięki rozbudowanemu Canadian Hydrogen Intensity Mapping Experiment (CHIME) zarejestrowano najjaśniejszy z FRB i dokładnie określono jego położenie. To zaś może się przyczynić do rozwiązania zagadki rozbłysków.
      Teleskop CHIME powstał, by wykrywać i tworzyć mapę rozkładu wodoru we wszechświecie. Pracę rozpoczął w 2018 roku i od tej pory wykrył około 4000 FRB. Nie był jednak w stanie dokładnie określić lokalizacji rozbłysków. Ostatnio jednak został rozbudowany. Dodano do niego CHIME Outriggers, trzy miniaturowe wersje CHIME rozsiane po całej Ameryce Północnej. Dzięki temu teleskop jest w stanie zlokalizować miejsce rozbłysku. Precyzja narzędzia jest zadziwiająca. Wyobraź sobie, że jesteśmy w Nowym Jorku, a na Florydzie przez tysięczną część sekundy – tyle trwają FRB – rozbłysł świetlik. Zlokalizowanie tej części galaktyki, w której doszło do FRB jest jak wskazanie nie tylko tego, z którego drzewa świetlik pochodzi, ale na której gałęzi przysiadł, mówi Shion Andrew z Kavli Institute.
      Wspomniany na wstępie rozbłysk zyskał nieoficjalną nazwę RBLOAT, od „radio brightest flash of all time” (najjaśniejszy rozbłysk radiowy wszech czasów). Jego jasność, w połączeniu ze stosunkowo niewielką odległością, w jakiej do rozbłysku doszło, daje astronomom bezprecedensową okazję do badania tego typu zjawisk. RBFLOAT miał bowiem miejsce w odległości około 130 milionów lat świetlnych od Ziemi, w Gwiazdozbiorze Wielkiej Niedźwiedzicy.
      Ultrajasny rozbłysk został wykryty 16 marca 2025 roku. Był tak jasny, że początkowo naukowcy nie byli pewni, czy to FRB czy też jakieś zjawisko, do którego doszło na Ziemi. Okazało się jednak, że teleskopy CHIME Outrigger wskazały, że zjawisko miało miejsce w galaktyce spiralnej NGC4141. Mieliśmy więc do czynienia z jednym z najbliższych i najjaśniejszych z wykrytych FRB.
      Dzięki kolejnym obserwacjom tego obszaru astronomowie dowiedzieli się, że FRB pochodził zza krawędzi regionu aktywnego formowania się gwiazd. Autorzy badań wysunęli hipotezę, że źródłem RBFLOAT był magnetar, młoda gwiazda neutronowa o potężnych polach magnetycznych. Lokalizacja miejsca rozbłysku, zaraz za krawędzią regionu formowania się gwiazd, może sugerować, że to magnetar w nieco starszym wieku.
      Uczeni przeszukali cały zestaw danych CHIME i nie znaleźli w tym regionie innego rozbłysku. Zatem przynajmniej w ciągu ostatnich 6 lat nie doszło tam do podobnego wydarzenia. Wciąż nie wiadomo, czy powtarzające się i unikatowe FRB mają to samo źródło. Istnieją pewne dowody wskazujące, że nie wszystkie rozbłyski powstają tak samo. Dzięki takim urządzeniom jak CHIME naukowcy mogą rejestrować setki FRB rocznie, porównywać je ze sobą i próbować rozwiązać zagadkę tych niezwykłych zjawisk.
      Badania zostały szczegółowo opisane na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół, kierowany przez naukowców z University of Texas w Austin, zidentyfikował najbardziej odległą i najstarszą czarną dziurę, jaką kiedykolwiek potwierdzono obserwacyjnie. Dziura i jej macierzysta galaktyka CAPERS-LRD-z9, istniały zaledwie 500 milionów lat po Wielkim Wybuchu, 13,3 miliarda lat temu.

      Odkrycia dokonano za pomocą teleskopu Jamesa Webba (JWST) w ramach programu CAPERS (CANDELS-Area Prism Epoch of Reionization Survey), którego celem jest identyfikacja i analiza najodleglejszych galaktyk. Kluczowe było zastosowanie spektroskopii, pozwalającej na rozszczepienie światła na poszczególne długości fal i wykrycie charakterystycznych przesunięć widma, wywołanych ruchem gazu wokół czarnej dziury. Dzięki temu astronomowie wykryli gaz poruszający się z prędkością ponad 3500 km/s. To sygnał wskazujący na istnienie aktywnego jądra galaktycznego. Zauważono je przy przesunięciu ku czerwieni z = 9,288.

      Galaktyka należy do intrygującej klasy Małych Czerwonych Kropek (Little Red Dots). To odkryte w 2024 roku przez JWST kompaktowe obiekty, które pojawiły się między 0,6 a 1,5 miliarda lat po powstaniu wszechświata. W przypadku CAPERS-LRD-z9 źródłem intensywnego blasku jest supermasywna czarna dziura. Jej masę oszacowano na nawet 300 milionów mas Słońca, co stanowi do połowy masy wszystkich gwiazd w galaktyce.

      Modelowanie emisji w zakresie UV i optycznym sugeruje, że czarna dziura jest otoczona gęstym obłokiem neutralnego gazu o gęstości rzędu 1010 cząsteczek wodoru na centymetr sześcienny. Ten gaz, działając jak filtr, nadaje obserwowanej galaktyce charakterystyczny czerwony odcień. Obserwacje wskazują również na małe rozmiary galaktyki, jej średnica to około 1100 lat świetlnych.

      Tak masywna czarna dziura w tak młodym Wszechświecie rodzi fundamentalne pytania o mechanizmy ich powstawania. Być może czarne dziury we wczesnym wszechświecie rosły znacznie szybciej, niż zakładają obecne modele, albo też rozpoczynały swoje istnienie od znacznie większej masy.
      Więcej na ten temat: CAPERS-LRD-z9: A Gas-enshrouded Little Red Dot Hosting a Broad-line Active Galactic Nucleus at z = 9.288.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...