
Wysysanie metali z dna morskiego sposobem na uniknięcie kryzysu?
By
KopalniaWiedzy.pl, in Ciekawostki
-
Similar Content
-
By KopalniaWiedzy.pl
Naukowcy z Politechniki Wrocławskiej stoją na czele międzynarodowej grupy badawczej prowadzącej wraz z partnerami biznesowymi projekt, którego celem jest sprawdzenie możliwości pozyskiwania cennych metali z wód podziemnych. Uczeni zbadają solanki znajdujące się na terenie Polski, Czech, Słowacji, Węgier, Hiszpanii i Portugalii. Projektem BrineRIS kieruje dr Magdalena Worsa-Kozak z Wydziału Geoinżynierii, Górnictwa i Geologii PWr.
Uczeni przeprowadzą analizy 12 wybranych źródeł i będą badali możliwość pozyskiwania z nich np. litu jedną z trzech rozwijanych właśnie technologii. Lit jest tutaj szczególnie pożądanym metalem. Wykorzystuje się go m.in. do budowy akumulatorów samochodowych. W związku z rosnącą popularnością samochodów elektrycznych popyt na lit może do końca dekady wzrosnąć nawet pięciokrotnie.
Obecnie znaczną część litu pozyskuje się ze zbiorników solankowych na wysoko położonych obszarach Boliwii, Argentyny czy Chile. Najpierw bogate w lit wody są pompowane do stawów ewaporacyjnych, tam przez kilka miesięcy woda odparowuje, następnie z osadu pozyskiwany jest węglan litu, który poddaje się kolejnym obróbkom. Jednak taki sposób pozyskiwania litu ma negatywny wpływ na środowisko naturalne. Stawy zajmują olbrzymie powierzchnie, prowadzi to też do obniżenia poziomu wód gruntowych z powodu wypompowywania solanek. Kolejnym problemem są środki chemiczne używane w tej metodzie.
Dlatego też w wielu miejscach prowadzi się prace nad technologiami bezpośredniej ekstrakcji litu. Są one niezależne od pogody, ale problem stanowi cena energii elektrycznej używanej w tej metodzie.
Rozwiązaniem może być sięgnięcie do solanek geotermalnych. Można by z nich uzyskiwać lit, a cały proces byłby zasilany energią pozyskiwaną z samej solanki. W ramach projektu BrineRIS analizowane będą dane dotyczące występowania solanek oraz ich składu, ze szczególnym uwzględnieniem litu, strontu i baru. Obecnie te dane są bardzo rozproszone. Nie ma jednego miejsca, w którym zainteresowany przedsiębiorca mógłby przejrzeć przekrojowo takie informacje. Do tego część np. badań składu chemicznego solanek została przeprowadzona w ramach projektów naukowych czy inwestycyjnych związanych z innymi tematami i te dane nie zostały nigdy przeanalizowane pod kątem odzysku pierwiastków, ani w jakiejkolwiek formie upublicznione, mówi dr Worsa-Kozak.
Ponadto przeprowadzona zostanie analiza solanek pod kątem pozyskania z nich litu za pomocą jednej z trzech technologii. Elektrolitycznymi metodami pozyskiwania tego pierwiastka zajmą się naukowcy z Uniwersytetu Gandawskiego, technologią adsorbcyjną specjaliści z fińskiej służby GTK, a ekstrakcją rozpuszczalnikową GTK we współpracy z Politechniką Wrocławską.
Będziemy także analizować te solanki, które mają niższe temperatury, czyli np. około 40 czy 60 stopni C. i w związku z tym nie nadają się do produkcji energii elektrycznej. Mogą natomiast być odpowiednie do produkcji ciepła i dlatego naukowcy z TU Freiberg będą klasyfikować te solanki, z których ciepło można byłoby wykorzystywać do poprawy samego procesu technologicznego, np. do podgrzania chłodniejszej wody i poprawy efektywności testowanych technologii, zmniejszając ich koszty, dodaje kierująca projektem.
« powrót do artykułu -
By KopalniaWiedzy.pl
Ekotoksykolog Heahter Leslie i chemik Maria Lamoree z Vrije Universiteit Amsterdam wraz z zespołem jako pierwsi wykazali, że plastik, którym zanieczyściliśmy środowisko naturalne, trafił już do ludzkiej krwi. Wyniki ich badań, prowadzonych w ramach projektu Immunoplast, zostały opublikowane na łamach pisma Environment International.
Grupa naukowców z Amsterdamu opracowała metodę pozwalającą na odnalezienie plastiku we krwi człowieka. Do badań zaangażowano 22 anonimowych dawców, a ich krew sprawdzono pod kątem obecności pięciu różnych polimerów, wchodzących w skład tworzyw sztucznych.
Polimery znaleziono u 3/4 badanych. Tym samym po raz pierwszy udowodniono, że obecny w środowisku mikroplastik przenika na naszej krwi. Wcześniej wiedzieliśmy tylko, że istnieje taka możliwość, gdyż wskazywały na nią eksperymenty laboratoryjne. Tym razem mamy dowód, że nasz organizm absorbuje plastik podczas codziennego życia, a tworzywa sztuczne trafiają do krwi.
Średnia koncentracja plastiku we krwi wszystkich 22 badanych wynosiła 1,6 mikrograma na mililitr. To mniej więcej łyżeczka plastiku na 1000 litrów wody.
Najczęściej występującym we krwi rodzajem plastiku były poli(tereftalan etylenu) – czyli PET, z którego wytwarza się plastikowe butelki na wodę i napoje – polietylen, popularne tworzywo do produkcji m.in. plastikowych woreczków, tzw. zrywek rozpowszechnionych w handlu spożywczym oraz polistyren, z którego powstaje styropian, szczoteczki do zębów czy zabawki. We krwi badanych znaleziono też poli(metakrylan metylu), PMMA, główny składnik szkła akrylowego. Naukowcy odkryli też polipropylen, jednak jego koncentracja we krwi była zbyt mała, by dokonać precyzyjnych pomiarów.
Dzięki badaniom Leslie i Lamoree uczeni będą mogli pójść dalej. Teraz kolejne zespoły naukowe będą mogły poszukać odpowiedzi na pytania o to, jak bardzo nasze ciała są zanieczyszczone plastikiem, na ile łatwo mikroplastik może przenikać z krwi do różnych tkanek ludzkiego organizmu oraz czy niesie to ze sobą zagrożenie dla zdrowia, a jeśli tak, to jakie są to zagrożenia.
Obecne prace badawcze zostały sfinansowane przez niedochodową organizację Common Seas oraz założone przez holenderskie Ministerstwo Zdrowia i Holenderską Organizację Badań Naukowych konsorcjum ZonMw zajmujące się badaniem kwestii zdrowia publicznego.
« powrót do artykułu -
By KopalniaWiedzy.pl
Niejednokrotnie słyszeliśmy o plastiku trafiającym do oceanów oraz pomysłach na jego usunięcie. Musimy jednak pamiętać, że plastikiem zanieczyściliśmy nie tylko wody na całym świecie. Nowe badania pokazuje, że zagęszczenie nanoplastiku w powietrzu jest znacznie większe niż dotychczas sądzono.
Dominik Brunner ze Szwajcarskich Federalnych Laboratoriów Wiedzy Materiałowej i Technologii (Empa) oraz badacze z Uniwersytetu w Utrechcie i Austriackiego Centralnego Instytutu Meteorologii i Geofizyki postanowili zbadać, jak wiele nanoplastiku opada na ziemię z atmosfery. Uzyskane wyniki zaskoczyły badaczy.
Z ich pomiarów wynika bowiem, że niektóre fragmenty nanoplastiku mogą być niesione przez powietrze nawet na odległość 2000 kilometrów, na każdego roku na teren Szwajcarii opada około 43 bilionów (!) miniaturowych fragmentów plastiku. To zaś może oznaczać, że w powietrza na Szwajcarię, od centrów miast po odległe alpejskie doliny, każdego roku spada 3000 ton plastikowych odpadów.
To bardzo wysokie szacunki, wyższe niż uzyskane przez innych naukowców, dlatego potrzebne są kolejne badania. Tym bardziej, że problem nanoplastiku rozprzestrzeniającego się w powietrzu jest w ogóle bardzo słabo rozpoznany. Tymczasem badania Brunnera, pomimo szokujących wyników, są najdokładniejszymi tego typu pracami na świecie. Szwajcarski uczony i jego holendersko-austriacki zespół opracowali nową metodę oceny zanieczyszczenia plastikiem, w której użyli spektrometru mas.
Na miejsce badań naukowcy wybrali szczyt góry Hoher Sonnenblick w Parku Narodowym Hohe Tauern w Austrii. To niewielki obszar położony na wysokości 3106 metrów n.p.m. Od 1886 roku znajduje się tam obserwatorium Centralnego Instytutu Meteorologii i Geodynamiki. Od czasu rozpoczęcia tutaj badań naukowych obserwatorium było nieczynne jedynie przez 4 dni.
Naukowcy codziennie o tej samej porze przez 38 dni pobierali próbki śniegu z tego samego obszaru. Zawartość próbek była następnie badana, a dzięki danym meteorologicznym można było określić, skąd wiatr przyniósł plastik. Naukowcy wykazali, że największa emisja nanoplastiku ma miejsce w gęsto zaludnionych obszarach miejskich. Około 30% zanieczyszczeń plastikiem trafiało na górski szczyt ze źródeł znajdujących się w promieniu 200 kilometrów, głównie z miast. Jednak wszystko wskazuje na to, że alpejskie szczyty są też zanieczyszczane plastikiem, który jest unoszony przez wiatr z powierzchni oceanu. Około 10% plastiku pochodziło z odległości ponad 2000 kilometrów, źródłem części był Atlantyk.
Oprócz plastiku w śniegu zidentyfikowano wiele innych zanieczyszczeń, od saharyskiego piasku po fragmenty okładzin hamulcowych z samochodów. To zanieczyszczenia, którymi oddychamy, które trafiają do naszych organizmów. Obecnie nie jest jasne, czy zanieczyszczenie mikro- i nanoplastikiem jest szkodliwe dla zdrowia. Warto jednak podkreślić, że nanoplastik jest na tyle mały, że trafia głęboko do płuc, a jest na tyle mały, że może z nich przedostać się do krwi.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Instytutu Chemii Fizycznej PAN pracujący pod kierunkiem prof. Juana Carlosa Colmenaresa zaproponowali zastosowanie stabilnego chemicznie i nisko toksycznego związku – dwutlenku tytanu (TiO2 P-25) – i połączenie go ze związkami węgla w celu skutecznej detoksykacji różnych związków w powietrzu i wodzie.
TiO2 działa jako fotokatalizator, który może degradować szeroką gamę zanieczyszczeń chemicznych, w tym związki organiczne, a nawet drobnoustroje, pod wpływem światła UV pochodzącego ze Słońca. Ponadto jego synteza jest opłacalna ekonomicznie, a sam materiał nie ulega degradacji pod wpływem czynników atmosferycznych czy światła.
Badacze dodatkowo zmodyfikowali nanocząstki TiO2, zwijając je w rulon za pomocą ultradźwięków, otrzymując nanometrowe rolki. Dzięki takiemu zabiegowi materiał lepiej rozkłada szkodliwe substancje chemiczne. Taki materiał staje się także skutecznym sorbentem, który jest w stanie wyłapywać molekuły pomiędzy poszczególnymi warstwami nanorolek. Oprócz modyfikacji powierzchni, dwutlenek tytanu przekształcono chemicznie w tytanian, dzięki czemu zyskał on na właściwościach fotokatalitycznych.
Rozwój nanotechnologii sprawił, że ich zastosowanie nie jest już tylko teorią. Nanomateriały coraz częściej stosowane są w praktyce i powoli wkraczają do zastosowań przemysłowych. W naszej pracy postawiliśmy na wytworzenie kompozytu, który łączy unikalne właściwości cienkiego dwuwymiarowego nanomateriału – zredukowanego tlenku grafitu (rGO) – z wysoką fotoreaktywnością nanorurek tlenku tytanu. Takie połączenie pozwoliło na uzyskanie pożądanych właściwości fizykochemicznych, a także uzyskanie właściwości sorpcyjnych. Nasz kompozyt wykazuje wysoką skuteczność unieszkodliwiania toksycznych związków chemicznych, wliczając w to nawet środki bojowe tj. gaz musztardowy. Wykazaliśmy, że materiał ten jest wysoce skuteczny w usuwaniu zanieczyszczeń środowiskowych, w szczególności w neutralizacji związków organicznych, a także może być wykorzystany jako katalizator do zastosowania w przetwarzaniu biomasy – zauważa pierwszy autor pracy, dr Dimitrios A. Giannakoudakis.
Wytworzony przez badaczy kompozyt na bazie zredukowanego tlenku grafitu oraz tytanianu jest o wiele skuteczniejszy w zakresie światła UV od fotokatalizatora TiO2 oraz dobrze znanych materiałów węglowych tj. rGO. Dzięki modyfikacji kompozyt jest w stanie degradować zanieczyszczenia także w świetle widzialnym. To sprawia, że działa on uniwersalnie w oczyszczaniu powietrza i wody z różnych szkodliwych chemikaliów pod wpływem zwykłego światła słonecznego. W pracy autorzy zaprezentowali nowoczesne podejście do syntezy nanokompozytu przedstawiając nie tylko degradację toksycznych substancji do mniej szkodliwych związków, ale także możliwość wyłapywania produktów degradacji dzięki dużej, aktywnej powierzchni kompozytu. Praca została opublikowana w Chemical Engineering Journal.
Uważamy, że obróbka wstępna ultradźwiękami przed obróbką hydrotermalną ma kluczowe znaczenie dla powstania naszego nanokompozytu, składającego się ze zwiniętych nanorurek z tytanianu połączonych z równomiernie rozproszonym rGO, podczas gdy samo mieszanie magnetyczne daje w efekcie o wiele słabszy fotokatalizator. Wyższość naszego nanokompozytu nad wzorcowym fotokatalizatorem TiO2 P25 wynika z jego szczególnej struktury i jest związana z dużą ilością powierzchniowych grup funkcyjnych, które działają jako centra katalityczne. Kompozyt ma także ogromną porowatość przez co jest to doskonały materiał do oczyszczania środowiska pod wpływem promieniowania słonecznego – mówi profesor Colmenares.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z University of Plymouth i University of Illinois at Urbana-Champaign postanowili przetestować nowe i używane plastikowe przedmioty, w tym dziecięce zabawki, opakowania na kosmetyki i wyposażenie biurowe, pod kątem występowania w nich metali ziem rzadkich. Wyniki badań mogą niepokoić.
Okazało się, że metale ziem rzadkich trafiły do 24 z 31 testowanych produktów, w tym do jednorazowych opakowań na żywność. Metale te są wykorzystywane do produkcji sprzętu elektronicznego, a do plastiku trafiają przypadkiem w wyniku recyklingu.
Jako, że metale ziem rzadkich znaleziono też w plastiku znalezionym na plażach, autorzy doszli do wniosku, że zanieczyszczenie tymi metalami trwa od dawna i nie jest związane z jednym źródłem czy niedopatrzeniem.
Metale ziem rzadkich są stosowane w elektronice ze względu na ich właściwości magnetyczne, fosforoscencyjne czy elektrochemiczne. Jednak nie są celowo dodawane do plastiku, gdyż niczemu tam nie służą. Ich obecność jest najpewniej wynikiem przypadkowego zanieczyszczenia podczas mechanicznego oddzielania i przetwarzania elementów nadających się do recyklingu, mówi główny autor badań, doktor Andrew Turner.
Nie znamy skutków zdrowotnych chronicznego narażenia na kontakt z niewielkimi ilościami metali ziem rzadkich. Jednak coraz częściej znajdujemy je w coraz większym stężeniu w żywności, wodzie, niektórych lekarstwach. To oznacza, że plastik prawdopodobnie nie jest znaczącym źródłem zagrożenia. Jednak znalezienie tych metali w plastiku wskazuje, że mogą się tam też trafiać inne składniki o znanym negatywnym wpływie na zdrowie, dodaje.
Doktor Turner specjalizuje się w badaniu toksycznych substancji w produktach codziennego użytku. W 2018 roku wykazał, że niebezpieczne dla zdrowia związki bromu, antymonu i ołowiu trafiają do przedmiotów mających kontakt z żywnością oraz do innych przedmiotów codziennego użytku, gdyż producenci tych przedmiotów wykorzystują plastik z recyklingu elektroniki.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.