
Sympatyczne chłodzenie pojedynczego protonu
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W fizyce jądrowej termin „liczby magiczne” odnosi się do takiej liczby protonów lub neutronów, która zapewnia jądru atomowemu większą stabilność poprzez wypełnienie powłok. Z modelu powłokowego wynika bowiem, że jądra, których powłoki są wypełnione, są stabilniejsze. Obecnie uznane liczby magiczne zarówno dla protonów jak i neutronów to 2, 8, 20, 28, 50, 82 i 126. Jeśli mamy do czynienia z jądrem, dla którego i protony i neutrony występują w liczbie magicznej, mówimy o jądrze podwójnie magicznym. Jądrem podwójnie magicznym jest np. jądro tlenu, zawierające 8 protonów i 8 neutronów.
Jednak wspomniane powyżej liczby odnoszą się do stabilnych izotopów. Znacznie słabiej rozumiemy liczby magiczne dla krótkotrwałych egzotycznych izotopów. Zrozumienie egzotycznych jąder atomów pozwoli nam lepiej zrozumieć samą naturę materii i powstawanie atomów w ekstremalnych środowiskach.
Naukowcy z Instytutu Współczesnej Fizyki Chińskiej Akademii Nauk jako pierwsi precyzyjnie zmierzyli masę egzotycznego bardzo krótkotrwałego jądra krzemu-22. To jądro o bardzo dużym deficycie neutronów. Najbardziej rozpowszechniony izotop 28Si ma 14 neutronów. Tymczasem 22Si ma ich zaledwie 8. Oraz 14 protonów. I właśnie liczba 14 jest, zdaniem chińskich uczonych, liczbą magiczną dla protonów w przypadku jąder egzotycznych.
W ciągu ostatnich lat naukowcy badający egzotyczne jądra doszli do wniosku, że w ich przypadku liczbami magicznymi dla neutronów są 14, 16, 32 i 34. Rzadko jednak udaje się to, co udało się właśnie pracownikom Chińskiej Akademii Nauk – określić magiczną liczbę protonów dla egzotycznych jąder.
Sugestie, że tak może być, pojawiły się w czasie badań nad tlenem-22 (posiada 14 neutronów i 8 protonów). Zauważono wówczas, że 14 neutronów ma w jego przypadku cechy wskazujące na liczbę magiczną. Teoretycy stwierdzili zatem, że w przypadku „lustrzanego odbicia” tlenu-22, czyli krzemu-22 (14 protonów i 8 neutronów) liczba 14 może być liczbą magiczną dla protonów. Badania pokazały, że tak rzeczywiście jest.
Źródło: Z=14 Magicity Revealed by the Mass of the Proton Dripline Nucleus 22Si, https://journals.aps.org/prl/abstract/10.1103/ffwt-n7yc
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Thomas Jefferson National Accelerator Facility dokonano pierwszych w historii pomiarów gluonów wewnątrz jądra atomowego. To duży krok w kierunku poznania rozkładu pola gluonowego (pola Yanga-Millsa) wewnątrz protonu, cieszy się jeden z członków zespołu badawczego, profesor Axel Schmidt z George Washington University. Jesteśmy na pograniczu wiedzy o „kleju atomowym”. W zasadzie nic o tym nie wiemy, więc przydatna jest każda nowa informacja. To jednocześnie niezwykle ekscytujące i bardzo trudne, dodaje profesor Or Hen z MIT.
Gluony to cząstki elementarne pośredniczące w oddziaływaniach silnych. Są „klejem” zlepiającym kwarki, z których powstają protony i neutrony. Z wcześniejszych badań wiemy, jaki jest rozkład gluonów w swobodnych – niezwiązanych w jądrze atomowym – protonach i neutronach. Nie wiemy jednak, jak wygląda on, gdy protony i neutrony znajdują się wewnątrz jądra. Tymczasem na początku lat 80. XX wieku zauważono, że kwarki wewnątrz protonów i neutronów znajdujących się w jądrze atomowym poruszają się wolniej, niż kwarki w swobodnych nukleonach. To zdumiewające zjawisko, nazwane efektem EMC, nie zostało dotychczas wyjaśnione. Naukowcy, którzy chcą się o nim więcej dowiedzieć, badają gluony podobnie, jak badają kwarki. Jednak pomiar rozkładu elektrycznie obojętnych gluonów jest daleko trudniejszy, niż posiadających ładunek kwarków.
Naukowcy z Jefferson Lab przyjrzeli się gluonom i kwarkom, wykorzystując w tym celu mezon J/ψ, czyli czarmonium. Cząstkę tę można uzyskać ostrzeliwując protony i neutrony fotonami. Czarmonium szybko rozpada się na elektron i pozyton. Wykrywanie par elektron-pozyton pozwala obliczyć, ile mezonów J/ψ powstało. Jako że w skład czarmonium wchodzi kwark powabny, którego nie ma w żadnym z nukleonów, wiadomo, że czarmonium powstaje w wyniku interakcji fotonu z gluonem.
Żeby uzyskać czarmonium w wyniku ostrzeliwania swobodnych protonów fotonami – co wcześniej robiono już w Jefferson Lab – trzeba wykorzystać strumień fotonów o dużej energii, co najmniej 8,2 GeV (gigaelektronowoltów). Jednak autorzy najnowszych badań otrzymali czarmonium korzystając z fotonów o mniejszych energiach.
Było to możliwe dzięki temu, że jako cel wykorzystali jądra deuteru, helu i węgla. Nukleony w jądrach atomowych, w przeciwieństwie do swobodnych nukleonów używanych jako cel stacjonarny w badaniach, poruszają się. Doszło więc do połączenia energii kinetycznej poruszającego się nukleonu z energią kinetyczną fotonu, która była poniżej wymaganego minimum, co w rezultacie dało energię powyżej minimum, wystarczającą do powstania czarmonium.
Dzięki takiemu rozwiązaniu uczeni z USA stali się pierwszymi, którzy zbadali fotoprodukcję mezonu J/ψ poniżej minimalnej energii fotonów wymaganej przy stacjonarnym protonie. A ponieważ ich celem były atomy, mierzyli w ten sposób gluony w protonach i neutronach znajdujących się w jądrze atomowym.
Podstawowa trudność w przeprowadzeniu takiego eksperymentu polegała na tym, że nikt wcześniej nie próbował czegoś podobnego, nie wiadomo więc było, w jaki sposób eksperyment przygotować, ani czy w ogóle jest on możliwy. Udało się w olbrzymiej mierze dzięki doktorowi Jacksonowi Pybusowi z Los Alamos National Laboratory. W ramach swojej pracy magisterskiej na MIT wykonał analizę teoretyczną, która zaowocowała zaprojektowaniem odpowiedniego badania. To unikatowe badania zarówno z punktu widzenia z fizyki, jak i techniki eksperymentalnej opracowanej przez magistranta. Nikt z nas, z wyjątkiem Jacksona, nie byłby w stanie tego zrobić, przyznają autorzy badań.
Gdy naukowcy porównali wyniki pomiarów z teoretycznymi obliczeniami, okazało się, że podczas eksperymentu powstało więcej czarmonium, niż przewiduje teoria. To dowodzi, że gluony w związanych nukleonach zachowują się inaczej, niż w nukleonach swobodnych. Potrzeba jednak znacznie więcej badań, by stwierdzić, na czym polegają te różnice. Jednak teraz, gdy wiadomo, w jaki sposób należy przygotować odpowiednie eksperymenty, prowadzenie takich pomiarów będzie łatwiejsze.
Źródło: First Measurement of Near-Threshold and Subthreshold J/ψ Photoproduction off Nuclei
« powrót do artykułu -
przez KopalniaWiedzy.pl
Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 3000-tonowego Kamiokande, który działał w latach 1983–1995.
Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować.
Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K.
Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA.
Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie.
Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021.
Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki.
Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu.
Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Johnsa Hopkinsa rozszyfrowali, w jaki sposób działa białko YiiP, które zapobiega śmiertelnemu nagromadzeniu cynku wewnątrz bakterii. Zrozumienie ruchów YiiP pozwoli zaprojektować leki modyfikujące zachowanie 8 ludzkich białek ZnT - przypominają one YiiP i odgrywają ważną rolę w wydzielaniu hormonów oraz sygnalizacji między neuronami.
Warto przypomnieć, że pewne mutacje ZnT8 powiązano ze zwiększoną podatnością na cukrzycę typu 2. Mutacje, które uniemożliwiają funkcjonowanie tej proteiny, mają zaś, jak się wydaje, działanie ochronne.
Cynk jest niezbędny do życia [bierze np. udział w aktywacji genów, natomiast wysokie jego stężenia występują w pakietach insuliny produkowanych w komórkach beta wysp trzustkowych]. By dostać się i wydostać z komórki, gdzie wykonuje swoje zadanie, potrzebuje białek transportujących. Przy nieprawidłowym działaniu transportera stężenie cynku może osiągnąć toksyczny poziom. To studium pokazuje nam, jak działają białka usuwające ten pierwiastek - opowiada dr Dax Fu.
YiiP jest częściowo osadzone w błonie komórkowej E. coli. We wcześniejszym badaniu zespół Fu zmapował atomową strukturę YiiP i odkrył, że w jego centrum znajduje się kieszeń wiążąca cynk. Amerykanin podkreśla jednak, że tajemnicą pozostawało, w jaki sposób pojedyncza kieszeń może transportować cynk z jednej strony błony na drugą. Wiedząc, że za każdym razem, gdy na zewnątrz wydostaje się kation cynku, do środka komórki wnika proton, ekipa podejrzewała, że istnieje ukryty kanał, który pozwala na wymianę jonów.
Testując tę hipotezę i sprawdzając, jakie wewnętrzne elementy YiiP tworzą kanał, badacze z Uniwersytety Johnsa Hopkinsa nawiązali współpracę ze specjalistami z Brookhaven National Laboratory, którzy oświetlali zanurzone w wodzie białko promieniami X. Woda rozpadła się na atomy wodoru i rodniki hydroksylowe, a gdy ukryty kanał się otwierał, rodniki wiązały się z odsłoniętymi fragmentami białka. Dodatkowo YiiP pocięto enzymami na części i przeprowadzono analizę.
Koniec końców autorzy artykułu z Nature ustalili, że na zewnątrz błony cytoplazmatycznej znajduje się dużo protonów. Jako że w jej wnętrzu jest ich mniej, powstaje gradient stężenia. Protony dążą do jego wyrównania, dlatego kiedy centralna kieszeń transportera jest otwarta na zewnątrz, zaczynają się z nią wiązać. Gdy protony przemieszczają się z miejsca wysokiego stężenia do stężenia niższego, generują siłę jak spadająca woda. Białko wykorzystuje ją do zmiany swojego kształtu, odcinając dostęp do środowiska zewnętrznego i otwierając się na wnętrze. Tam proton kontynuuje swoje spadanie, oddzielając się od kieszeni. Po uwolnieniu protonu kieszeń może się związać z cynkiem. Powtórne wiązanie znowu zmienia kształt YiiP, odcinając dostęp ze środka i otwierając drogę z zewnątrz.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.