
Astronomowie znaleźli najbliższą Ziemi czarną dziurę
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Curtin University School of Earth and Planetary Sciences i Geological Survey of Western Australia, odkryli najstarszy na Ziemi krater uderzeniowy. Znaleźli go na obszarze North Pole Dome znajdującym się w regionie Pilbara, w którym znajdują się najstarsze skały na naszej planecie. Krater powstał 3,5 miliarda lat temu.
Przed naszym odkryciem najstarszy znany krater uderzeniowy na Ziemi liczył sobie 2,2 miliarda lat, mówi profesor Tim Johnson i dodaje, że znalezienie starszego krateru w dużym stopniu wpływa na założenie dotyczące historii Ziemi.
Krater zidentyfikowano dzięki stożkom zderzeniowym. To struktura geologiczna, która powstaje w wyniku szokowego przekształcenia skał. Stożki powstają w pobliżu kraterów uderzeniowych czy podziemnych prób jądrowych. W badanym miejscu stożki powstały podczas upadku meteorytu pędzącego z prędkością ponad 36 000 km/h. Było to potężne uderzenie, w wyniku którego powstał krater o średnicy ponad 100 kilometrów, a wyrzucone szczątki rozprzestrzeniły się po całej planecie.
Wiemy, że takie zderzenia często miały miejsce na wczesnych etapach powstawania Układu Słonecznego. Odkrycie tego krateru i znalezienie innych z tego samego czasu może nam wiele powiedzieć o pojawieniu się życia na Ziemi. Kratery uderzeniowe tworzą bowiem środowisko przyjazne mikroorganizmom, takie jak zbiorniki z gorącą wodą, dodaje profesor Chris Kirkland.
Olbrzymia ilość energii, jaka wyzwoliła się podczas uderzenia, mogła mieć wpływ na kształt młodej skorupy ziemskiej, wciskając jedne jej części pod drugie lub wymuszając ruch magmy w górę. Uderzenie mogło tez przyczynić się do powstania kratonu, dużego stabilnego fragmentu skorupy ziemskiej, będącego zalążkiem kontynentu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Hel jest, po wodorze, najbardziej rozpowszechnionym pierwiastkiem we wszechświecie. Jest jednak najmniej aktywnym pierwiastkiem chemicznym, dlatego też niemal cały hel, który mógł kiedykolwiek istnieć na Ziemi uleciał w przestrzeń kosmiczną, gdyż nie utworzył związków z żadnym innym pierwiastkiem. Taki przynajmniej pogląd panował do tej pory, a teraz może się on zmienić. Naukowcy z Japonii i Tajwanu wykazali właśnie, że w warunkach wysokiego ciśnienia hel może wiązać się z żelazem, co może oznaczać, że olbrzymie ilości helu występują w jądrze Ziemi. Jeśli tak jest, odkrycie to będzie miało olbrzymie znaczenie dla opisu wnętrza naszej planety i może wpłynąć na rozumienie mgławicy, z której powstał Układ Słoneczny.
W skałach wulkanicznych od dawna wykrywany jest 3He. Izotop ten, w przeciwieństwie do znacznie bardziej rozpowszechnionego 4He, nie powstaje na Ziemi. Uważa się, że głęboko w ziemskim płaszczu istnieją pierwotne materiały, które go zawierają. Eksperymenty przeprowadzone przez japońsko-tajwański zespół rzucają wyzwanie temu przekonaniu.
Od wielu lat badam procesy geologiczne i chemiczne zachodzące w głębi Ziemi. Biorąc pod uwagę panujące tam temperatury i ciśnienie, prowadzimy eksperymenty, które odzwierciedlają te warunki. Często więc korzystamy z rozgrzewanej laserowo komory diamentowej, mówi profesor Kei Hirose z Uniwersytetu Tokijskiego.
W tym przypadku naukowcy miażdżyli w imadle diamentowym żelazo i hel. Poddawali je oddziaływaniu ciśnienia od 5 do 54 gigapaskali i temperatury o 1000 do 2820 kelwinów. Okazało się, że żelazo w takich warunkach zawiera nawet 3,3% helu. To tysiące razy więcej, niż uzyskiwano we wcześniejszych podobnych eksperymentach. Profesor Hirose podejrzewa, że częściowo odpowiada za to któryś z nowych elementów eksperymentu.
Hel bardzo łatwo ucieka do otoczenia w standardowych warunkach temperatury i ciśnienia. Musieliśmy coś wymyślić, by uniknąć tego podczas pomiarów. Mimo, że sam eksperyment prowadziliśmy przy bardzo wysokich temperaturach, pomiarów dokonywaliśmy w warunkach kriogenicznych. W ten sposób uniknęliśmy ucieczki helu i mogliśmy go wykrywać w żelazie, wyjaśnia uczony. Badania wykazały, że hel został wbudowany w strukturę krystaliczną żelaza i pozostawał w niej nawet, gdy ciśnienie uległo zmniejszeniu.
Wyniki eksperymentu oznaczają, że w jądrze Ziemi może znajdować się hel z mgławicy, która utworzyła Układ Słoneczny. Jeśli tak, to znaczy, że znajduje się tam gaz z mgławicy, a zawierał on też wodór. To zaś może oznaczać, że przynajmniej część wody na naszej planecie pochodzi z tego pierwotnego gazu. Niewykluczone zatem, że specjaliści muszą przemyśleć teorie dotyczące formowania się i ewolucji Ziemi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.