Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W reakcji na infekcję koronawirusem dzieci wytwarzają inne przeciwciała i w innej ilości niż dorośli

Recommended Posts

Organizmy dzieci i dorosłych wytwarzają różne rodzaje i ilości przeciwciał w reakcji na infekcję SARS-CoV-2, donoszą naukowcy z Columbia University. Różnica w przeciwciałach wskazuje, że zarówno sama infekcja jak i reakcja układu odpornościowego dzieci przebiega odmiennie  niż u dorosłych, a organizmy większości dzieci z łatwością pozbywają się koronawirusa.

U dzieci infekcja trwa znacznie krócej, a wirus prawdopodobnie nie rozprzestrzenia się tak bardzo, jak u dorosłych. Organizmy dzieci mogą pozbywać się wirusa bardziej efektywnie i mogą nie potrzebować tak silnej odpowiedzi przeciwciał, jak dorośli, mówi profesor Matteo Porotto w Wydziału Pediatrii.

Jedną z najbardziej uderzających cech obecnej pandemii jest fakt, że dzieci radzą sobie z zachorowaniem znacznie lepiej. To nowa sytuacja dla każdego. Ale dzieci są szczególnie dobrze przystosowane do zetknięcia się z patogenami, które napotykają po raz pierwszy. Ich układ odpornościowy jest specjalnie przystosowany do takich sytuacji. Dzieci mają bardzo dużo dziewiczych limfocytów T, które potrafią rozpoznawać wszelkie typy patogenów. Tymczasem układ odpornościowy dorosłych w dużej mierze polega na swojej pamięci patogenów, z którymi już się zetknął. Nasze organizmy nie są w stanie reagować na patogeny tak dobrze, jak organizmy dzieci, wyjaśnia immunolog profesor Donna Farber z Wydziału Chirurgii Columbia University.

W najnowszych badaniach wykorzystano dane pochodzące od 47 dzieci. Szesnaścioro z nich było leczonych na Columbia University z powodu wieloukładowego zespołu zapalnego u dzieci (MIS-C), który może pojawić się w kilka tygodni po infekcji koronawirusem. Pozostałych 31 dzieci zgłosiło się na leczenie z innych powodów i podczas przyjęcia wykryto u nich SARS-CoV-2. U połowy z tych 31 dzieci nie wystąpiły żadne objawy COVID-19. Wyniki dzieci porównano z wynikami 32 dorosłych, z których część przechodziła infekcję koronawirusem w sposób na tyle poważny, że konieczne było przyjęcie ich do szpitala, a u części objawy były na tyle łagodne, że mogli pozostać w domach.

Okazało się, że u obu grup dzieci – tych leczonych z powodu MIS-C i tych, u których MIS-C nie występowało – pojawił się ten sam profil przeciwciał. Inaczej było u dorosłych, gdzie widoczne były różnice w zależności od przebiegu choroby. W porównaniu z dorosłymi u dzieci występowało mniej przeciwciał przeciwko białku szczytowemu (białko S), które jest używane przez wirusa do przyczepiania się do komórek gospodarza. U dzieci zauważono też najmniej przeciwciał neutralizujących, podczas gdy u dorosłych, nawet tych w wieku 20 lat, organizm produkował dużo takich przeciwciał. Najwięcej przeciwciał neutralizujących występowało u najbardziej chorych dorosłych.

Profesor Farber mówi, że może wydawać się sprzeczne z intuicją, iż u najbardziej chorych występuje najwięcej przeciwciał neutralizujących, jednak prawdopodobnie jest to wskaźnikiem dłuższego czasu obecności wirusa w organizmie. Istnieje związek pomiędzy siłą odpowiedzi immunologicznej a siłą infekcji. im bardziej poważna infekcja, tym silniejsza reakcja układu odpornościowego, gdyż potrzebujemy więcej komórek i silniejszej odpowiedzi, by poradzić sobie z większą liczbą pagotenów.

W przeciwieństwie do dorosłych organizmy dzieci wytwarzały też bardzo mało przeciwciał przeciwko białku wirusa, które jest widoczne dla układu odpornościowego dopiero po tym, jak wirus zainfekuje komórkę. To wskazuje, że u dzieci wirus nie rozprzestrzenia się zbytnio i nie zabija zbyt wielu komórek. Jako, że organizmy dzieci szybko pozbywają się wirusa, nie występuje u nich infekcja na szeroką skalę i nie potrzebują silnej reakcji układu odpornościowego, dodaje Porotto. To zaś może sugerować, że zainfekowane dzieci – w porównaniu z zainfekowanymi dorosłymi – z mniejszym prawdopodobieństwem mogą zarazić innych. Badania, które ukazały się w innych krajach sugerują, że młodsze dzieci w wieku szkolnym nie są głównym źródłem zakażeń. Nasze dane są zgodne z tymi spostrzeżeniami, stwierdza Farber. Naukowcy zastrzegają jednak, że nie badali ilości wirusa u zainfekowanych dzieci.

Naukowcy mówią, że ich spostrzeżenia nie oznaczają, że dzieci będą słabiej reagowały na szczepionkę. Rozwijane obecnie szczepionki nie naśladują bowiem naturalnej drogi infekcji SARS-CoV-2. Mimo tego, że u dzieci w reakcji na infekcję SARS-CoV-2 nie występują przeciwciała neutralizujące, szczepionki projektowane są tak, by wytworzyć odpowiedź immunologiczną w sytuacji braku infekcji. Dzieci generalnie dobrze reagują na szczepionki i myślę, że po zaszczepieniu w ich organizmach pojawią się przeciwciała neutralizujące i prawdopodobnie będą lepiej chronione niż dorośli, mówi Farber. Uczona dodaje, że konieczne jest zwiększenie liczby dzieci biorących udział w badaniach klinicznych szczepionek na SARS-CoV-2, bo tylko w ten sposób będziemy mogli zrozumieć, na ile szczepionki takie skutecznie chronią najmłodszych.

Teraz naukowcy z Columbia University skupiają się na badaniu różnic pomiędzy reakcjami limfocytów T dzieci i dorosłych na obecność koronawiusa. Szczególnie interesują ich limfocyty T obecne w płucach, gdyż już wcześniejsze badania tej samej grupy naukowej wykazały, że odgrywają one większą rolę w walce z infekcją płuc niż limfocyty T, które wędrują po organizmie i trafiają również do płuc.

Uczeni wciąż nie są pewni, dlaczego organizmy dzieci lepiej sobie radzą z SARS-CoV-2. Być może u dzieci pojawia się silniejsza nieswoista odpowiedź odpornościowa, w ramach której do działania przystępuje interferon i makrofagi, atakujące wszystkie komórki zainfekowane przez patogen. Wcześniejsze badania sugerują bowiem, że u dorosłych zainfekowanych nowym koronawirusem odpowiedź nieswoista może być opóźniona. Jeśli nieswoista odpowiedź odpornościowa jest naprawdę silna, w płucach pozostaje mniej wirusa i przeciwciała oraz limfocyty T pojawiające się w ramach odpowiedzi odpornościowej swoistej mają mniej do roboty, stwierdza Farber.

Nie można też wykluczyć, że wirus ma mniejszą zdolność do infekowania komórek dzieci, być może dlatego, że na powierzchni tych komórek dochodzi do mniejszej ekspresji protein potrzebnych wirusowi do rozpoczęcia infekcji. Uczeni z Columbia testują właśnie te hipotezy, badając komórki dzieci w porównaniu z komórkami dorosłych.

Interakcja pomiędzy wirusem a gospodarzem to przyczyna, dla której obserwujemy tak duże różnice w reakcji na obecność wirusa. Jednak wciąż zbyt mało wiemy o tym wirusie, by jednoznacznie stwierdzić, dlaczego u niektórych choroba przebiega łagodnie, a u innych ma poważny przebieg, przyznaje Porotto.

Ze szczegółami badań można zapoznać się na łamach Nature w artykule Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Połączenie łagodnej infekcji i szczepionki wydaje się najbardziej efektywnym czynnikiem chroniącym przed COVID-19, informują naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Główny wniosek z naszych badań jest taki, że jeśli ktoś zachorował na COVID, a następnie został zaszczepiony, to nie tylko znacząco zwiększa się u niego liczba przeciwciał, ale rośnie ich jakość. To zaś zwiększa szanse, że przeciwciała te poradzą sobie z kolejnymi odmianami koronawirusa, mówi profesor Otto Yang z wydziałul chorób zakaźnych, mikrobiologii, immunologii i genetyki molekularnej.
      Wydaje się, że kolejne wystawienia układu odpornościowego na kontakt z białkiem kolca (białkiem S) pozwala układowi odpornościowemu na udoskonalanie przeciwciał u osoby, która chorowała na COVID-19. Uczony dodaje, że nie jest pewne, czy takie same korzyści odnoszą osoby, które przyjmują kolejne dawki szczepionki, ale nie chorowały.
      Grupa Yanga porównała przeciwciała 15 osób, które były zaszczepione, ale nie zetknęły się wcześniej z wirusem SARS-CoV-2 z przeciwciałami 10 osób, które nie były jeszcze zaszczepione, ale niedawno zaraziły się koronawirusem. Kilkanaście miesięcy później 10 wspomnianych osób z drugiej grupy było w pełni zaszczepionych i naukowcy ponownie zbadali ich przeciwciała.
      Uczeni sprawdzili, jak przeciwciała reagują na białko S różnych mutacji wirusa. Odkryli, że zarówno w przypadku osób zaszczepionych, które nie chorowały oraz tych, które chorowały, ale nie były szczepione, możliwości zwalczania wirusa przez przeciwciała spadały w podobnym stopniu gdy pojawiła się nowa mutacja. Jednak gdy osoby, które wcześniej chorowały na COVID-19, były rok po chorobie już w pełni zaszczepione, ich przeciwciała były zdolne do rozpoznania wszystkich mutacji koronawirusa, na których je testowano.
      Nie można wykluczyć, że odporność SARS-CoV-2 na działanie przeciwciał może zostać przełamana poprzez ich dalsze dojrzewanie w wyniki powtarzanej wskutek szczepienia ekspozycji na antygen, nawet jeśli sama szczepionka nie jest skierowana przeciwko danemu wariantowi, stwierdzają naukowcy. Przypuszczają oni, że kolejne szczepienia mogą działać podobnie jak szczepienia po przechorowaniu, jednak jest to tylko przypuszczenie, które wymagają weryfikacji.
      Ze szczegółami badań można zapoznać się w artykule Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niedawno zidentyfikowany wariant Omikron koronawirusa SARS-CoV-2 wywołał spore poruszenie wśród ekspertów. Tym, czego najbardziej obawiają się specjaliści, jest duża liczba zmian w tym wariancie. Zawiera on bowiem ponad 30 mutacji w białku S. Tym, które umożliwia wirusowi infekowanie komórek naszego organizmu.
      Na razie nie wiemy, czy Omikron jest bardziej zaraźliwy, czy powodowana nim choroba przebiega w inny sposób niż w przypadku wcześniejszych wariantów i czy obecnie dostępne szczepionki są równie skuteczne w jego przypadku. W RPA ukazały się właśnie wstępne wyniki badań sugerujących, że Omikron może z trzykrotnie większym prawdopodobieństwem może ponownie infekować ludzi. Wyniki tych badań nie zostały jeszcze opublikowane w recenzowanym czasopiśmie.
      Wydaje się, że Omikron pojawił się bardzo szybko, a specjaliści próbują zrozumieć, jak doszło do pojawienia się tak wielu mutacji w tak krótkim czasie.
      Jedną z możliwych dróg pojawienia się tak mocno zmutowanego wariantu jest jego wcześniejsze krążenie w izolowanej populacji, w której miał więcej możliwości zmiany niż w populacji ogólnej. Później mógł się rozprzestrzenić po poza tę populację. Alternatywnym wyjaśnieniem jest pojawienie się wielu mutacji u pojedynczej osoby. Taki scenariusz jest możliwy w przypadku osoby o osłabionym układzie odpornościowym, na przykład u nosiciela wirus HIV. RPA, gdzie po raz pierwszy odkryto wariant Omikron, ma największą na świecie populację nosicieli HIV. Mimo, że w międzyczasie zidentyfikowali starsze przypadki Omikrona w USA i Europie, scenariusza o dużej liczbie mutacji u pojedynczej osoby nie można wykluczyć.
      Masz układ odpornościowy składa się m.in. z komórek CD4+, które stymulują inne limfocyty T do ataku. U osób ze zdrowym układem odpornościowym limfocyty T niszczą komórki zarażone wirusem. Jednak u osób z osłabionym układem odpornościowym liczba komórek CD4+ T jest niewielka. Dlatego też może u nich dojść do długotrwałej infekcji. W trakcie jej trwania organizm nie jest jednak całkowicie bezbronny. Wytwarza on bowiem limfocyty B. Rozpoczyna się wyścig zbrojeń pomiędzy wirusem a układem odpornościowym. Atak ze strony limfocytów B jest na tyle słaby, że nie jest w stanie oczyścić organizmu z wirusa, jednak wywiera presję ewolucyjną na wirusa, który zaczyna mutować, by uniknąć ataku.
      Wiemy, że taki scenariusz jest możliwy, gdyż już przed kilkoma miesiącami w RPA opisano przypadek nosicielki wirusa HIV, która przez ponad pół roku była zarażona SARS-CoV-2. W tym czasie wirus w jej organizmie uległ licznym mutacjom, a część z nich pojawiła się w białku S.
      Jeszcze inną możliwą drogą nabycia tak wielu mutacji w krótkim czasie jest pojawienie się ich wśród zwierząt. Wiele dowodów wskazuje na to, że SARS-CoV-2 pochodzi od nietoperzy, znamy też przykłady przechodzenia tego wirusa z ludzi na zwierzęta. Nie można więc wykluczyć, że jakieś zwierzęta zaraziły się od ludzi SARS-CoV-2, w ich organizmach wirus zetknął się z zupełnie innym środowiskiem, inną presją ze strony układu odpornościowego, nabył wielu mutacji i ponownie zaraził człowieka. Jednak, jak podkreśla Gonzalo Bello z Instytutu Oswaldo Cruza w Rio de Janeiro, który badał brazylijską odmianę Gamma, taka droga nabycia dużej liczby mutacji to obecnie wyłącznie spekulacja.
      Dobre zrozumienie historii i ewolucji wariantu Omikron będzie wymagało zidentyfikowania pierwszego pacjenta lub społeczności, w której się pojawił. To jednak będzie bardzo trudne, gdyż wychwytujemy jedynie niewielką część zarażonych ludzi. Jednak im więcej przypadków Omikrona zostanie znalezionych, a ich genomy zsekwencjonowane, tym większe prawdopodobieństwo, że uda się określić obszar i czas, w którym po raz pierwszy się pojawił.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania przeprowadzone na Wydziale Inżynierii University of Cambridge wykazały, że zalecenie zachowania 2-metrowego odstępu w czasach pandemii COVID-19 zostało wybrane na zasadzie oceny kontinuum ryzyka, a nie na podstawie konkretnych wyników badań. Okazuje się bowiem, że rozkład prawdopodobieństwa zarażenia w zależności od odległości jest wysoce przypadkowy.
      Inżynierowie z Cambridge przeprowadzili modelowanie komputerowe, by zbadać rozprzestrzenianie się kropli w czasie, gdy ludzie kaszą. Zauważyli, że jeśli osoba zarażona SARS-CoV-2 nie nosi maseczki i kichnie, to może zarazić inną osobę nawet wówczas, gdy znajduje się ona na otwartej przestrzeni w odległości 2 metrów od kichającego. Naukowcy stwierdzili również, że istnieją duże różnice w skutkach kichania, a bezpieczny dystans pomiędzy osobami można ustalić na od 1 do ponad 3 metrów, w zależności od tego, jak duże ryzyko są w stanie zaakceptować instytucje odpowiedzialne za zdrowie publiczne.
      Badania, z którymi możemy zapoznać się na łamach pisma Physics of Fluids wskazują, że samo utrzymywanie dystansu nie wystarczy, by zahamować pandemię. Konieczne są szczepienia, wietrzenie pomieszczeń oraz noszenie masek.
      Mimo początkowego nacisku na dezynfekcję rąk i powierzchni wiadomo, że wirus przenosi się drogą kropelkową. Osoba chora może zarażać kaszląc, mówiąc czy nawet oddychając. Pamiętam, jak w 2020 roku dużo mówiono o tym, że wirus przenosi się za pośrednictwem klamek. Pomyślałem wówczas, że jeśli to prawda, to wirus musi opuszczać organizm chorej osoby i rozprzestrzeniać się zgodnie z zasadami mechaniki płynów, mówi główny autor badań, specjalista od mechaniki płynów profesor Epaminondas Mastorakos. Przez wiele ostatnich miesięcy opracowywał on wraz z zespołem różne modele rozprzestrzeniania się SARS-CoV-2.
      Częścią badań nad rozprzestrzenianiem się wirusa zajmuje się wirusologia. Mówi nam ona jak wiele wirusów jest w organizmie i ile wirionów rozsiewamy, mówiąc czy kaszląc. Ale część tych badań to obszar mechaniki płynów, dzięki której wiemy, co dzieje się z kropelkami płynu opuszczającego nasz organizm. Jako specjaliści od mechaniki płynów, chcieliśmy połączyć dane wirusologiczne osoby zakażającej, z danymi wirusologicznymi osoby zakażanej. To pozwala na ocenę ryzyka, dodaje doktor Shrey Trivedi.
      Naukowcy przeprowadzili więc całą serię symulacji. Szacowali np. co się dzieje, gdy organizm osoby zarażonej opuści tysiąc kropli, jak wiele z nich dotrze do osoby znajdującej się w tym samym pomieszczeniu, jak duże będą to krople, a wszystko było rozpatrywane z uwzględnieniem funkcji czasu i przestrzeni.
      Uczeni zauważyli, że w odległości 2 metrów nie dochodzi do znacznego spadku liczby kropli, zatem ryzyko zarażenia nie zmniejsza się znacząco. Gdy osoba chora kaszle i nie ma maseczki, większość dużych kropli opada na pobliskie powierzchnie. Jednak mniejsze krople pozostają zawieszone w powietrzu i szybko oraz łatwo rozprzestrzeniają się na odległość większą niż 2 metry, a ze względu na turbulencje powietrza każde kaszlnięcie charakteryzuje się odmiennym wzorcem rozprzestrzeniania się kropli. Nawet jeśli za każdym razem gdy kaszlę, wysyłam w powietrze taką samą liczbę kropli, to ze względu na zmiany prędkości, temperatury i wilgotności liczba kropli, która dotrze do osoby oddalonej ode mnie o 2 metry, za każdym razem będzie inna, wyjaśnia Mastorakos.
      Naukowcy podkreślają, że zasada 2 metrów to jedynie łatwy do zapamiętania przekaz, a nie gwarancja bezpieczeństwa.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...