Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ciemną materię tworzą czarne dziury? Obliczenia dodają skrzydeł odrzuconej koncepcji Hawkinga

Rekomendowane odpowiedzi

Wśród wielu niezwykłych idei Stephena Hawkinga jest i taka, zgodnie z którą ciemną materię stanowią czarne dziury, które powstały krótko po Wielkim Wybuchu. Pomysł taki jednak odrzucono, jednak nowe badania wskazują, że hipoteza taka może być prawdziwa.

Pierwotne czarne dziury miałyby powstać nie w wyniku zapadania się gwiazd, a bezpośrednio z gęstej materii powstałej tuż po Wielkim Wybuchu. Tym samym ich masa mogłaby być znacznie mniejsza od masy Słońca.

Obecnie znamy olbrzymie czarne dziury w centrach galaktyk oraz czarne dziury o masie gwiazdowej. Te drugie powstają w wyniku kolapsu grawitacyjnego gwiazd. Przed uruchomieniem wykrywacza fal grawitacyjnych LIGO znaliśmy czarne dziury o masie gwiazdowej nie przekraczającej około 20 mas Słońca. Jednak dzięki LIGO i europejskiemu VIRGO zaczęliśmy wykrywać bardziej masywne czarne dziury. Okazało się, że istnieją takie obiekty o masach od ponad 20 do nawet 85 mas Słońca. Udało się też zidentyfikować dziury o znacznie mniejszej masie. A najmniej masywna znana czarna dziura miała zaledwie 2,59 masy Słońca.

Jeśli uda się wykryć czarne dziury o mniejszych niż masy gwiazd, z których obiekty takie mogą powstawać, może to oznaczać, że mamy do czynienia właśnie z pierwotnymi czarnymi dziurami. Zresztą już same prace tandemu LIGO/Virgo pokazały, że zakres mas czarnych dziur jest znacznie większy niż dotychczas przypuszczano, więc i samych czarnych dziur jest znacznie więcej, niż nam się wydaje.

Jednak w 2017 roku Yacine Ali-Haïmoud, astrofizyk z New York University, opublikował pracę, w której wyliczał, że gdyby zaraz po Wielkim Wybuchu powstało tyle czarnych dziur, iż wyjaśniałyby one istnienie ciemnej materii, to z czasem dziury takie tworzyłyby pary, zaczynały wokół siebie krążyć, a w końcu łączyłyby się emitując fale grawitacyjne. Wydarzeń takich, wyliczał uczony, powinno być tak wiele, że LIGO/Virgo wykrywałyby tysiące razy więcej fal grawitacyjnych niż obecnie. Argumenty naukowca z Nowego Jorku były tak przekonujące, że wielu entuzjastów hipotezy pierwotnych czarnych dziur straciło dla niej serce.

W ubiegłym tygodniu na łamach Cosmology and Astroparticle Physics Karsten Jedamzik z Uniwersytetu w Monpellier opublikował obliczenia, z których wynika, że w wielkiej populacji pierwotnych czarnych dziur zachodziłoby dokładnie tyle zderzeń ile obecnie obserwują wykrywacze fal grawitacyjnych. Jeśli jego obliczenia są prawidłowe, a wydaje się, że przeprowadził je skrupulatnie, to pogrzebał nasze własne wyliczenia, przyznaje Ali-Haïmoud. To by oznaczało, że czarne dziury rzeczywiście mogą stanowić całą ciemną materię.

W latach 70. Stephen Hawking i Bernard Carr wysunęli hipotezę, że w czasie pierwszych ułamków sekundy po Wielkim Wybuchu, w rozszerzającym się wszechświecie pojawiały się niewielkie fluktuacje materii, które zamieniały się w czarne dziury. Hawking przeprowadził nawet zgrubne obliczenia, z których wynikało, że jeśli te czarne dziury miały rozmiar większy od małych asteroid, to istnieją do dzisiaj. W latach 90. zarysowano nieco bardziej szczegółowy obraz wydarzeń. Produkcję takich czarnych dziur przyspieszało ochładzanie się materii. Gdy po tysięcznych częściach sekundy od Wielkiego Wybuchu wszechświat nieco się ochłodził, kwarki i gluony z pierwotnej zupy zaczęły łączyć się w cięższe cząstki. Spadło ciśnienie, co spowodowało, że jeszcze więcej regionów zapadło się do czarnych dziur.

Jednak przed 30 laty nie rozumiano dobrze fizyki plazmy kwarkowo-gluonowej, więc nikt nie potrafił precyzyjnie obliczyć, jak pojawienie się innych cząstek wpłynęło na tworzenie się czarnych dziur, jak masywne były to dziury, ani jak wiele mogło ich powstać. Ponadto zbytnio się tym tematem nie zajmowano. Pierwotne dziury nie były potrzebne, gdyż panował szeroko rozpowszechniony pogląd, że ciemną materię tworzą WIMPy (słabo oddziałujące masywne cząstki). Pierwotne czarne dziury odeszły w zapomnienie, stawały się przedmiotem kpin.

Jednak WIMP-ów nie odkryto, za to coraz więcej wiemy od warunkach, jakie mogły panować na samym początku wszechświata.
Od kilku lat niektórzy naukowcy bardziej intensywnie zajmują się pierwotnymi czarnymi dziurami. Publikowane prace pokazują, w jaki sposób mogły one powstać. Pierwsza generacja czarnych dziur mogła pojawić się po spadku temperatury wszechświata i utworzeniu przez kwarki i gluony pierwszych protonów i neutronów. Spowodowany tym spadek ciśnienia wywołał tworzenie się czarnych dziur, z których każda mogła wchłonąć ze swojej okolicy materię o masie około 1 masy Słońca. Oddziaływanie czarnej dziury było ograniczone horyzontem.

Jednak wszechświat nadal się ochładzał. Zaczęły formować się kolejne cząstki, jak piony. To znowu spowodowało spadek ciśnienia i masowe pojawianie się kolejnych pierwotnych czarnych dziur. Jako, że wszechświat ciągle się rozszerzał, dziury należące do tej drugiej generacji mogły wchłaniać już więcej materii. Z obliczeń wynika, że było to około 30 mas Słońca. Dokładnie tyle, ile czarne dziury wykrywane przez LIGO/Virgo.

Po uruchomieniu LIGO zainteresowanie koncepcją pierwotnych czarnych dziur wzrosło. Jednak Ali-Haïmoud przedstawił wspomnianą wcześniej pracę, w której odrzucił tę koncepcję. Obliczył bowiem, że dziur powinno być tak dużo, że rejestrowalibyśmy obecnie tysiące razy więcej fal grawitacyjnych niż rejestrujemy.

Z zagadnieniem tym postanowił zmierzyć się Karsten Jedamzik, kosmolog z Montpellier. Gdy stworzył numeryczną symulację wszechświata pełnego obecnie czarnych dziur, odkrył zjawisko, którego Ali-Haimoud nie zauważył. Stwierdził otóż, że we wszechświecie pełnym czarnych dziur rzeczywiście dochodziłoby do bardzo częstego tworzenia się układów podwójnych takich obiektów. Jednak równie często do takiego układu podwójnego zbliżyłaby się trzecia czarna dziura i zamieniłaby się miejscami z jedną z dziur układu. Taki proces ciągle by się powtarzał. Z czasem, jak wylicza Jedamzik, takie ciągle zmieniające partnera czarne dziury tworzyłyby układy podwójne o niemal kołowych orbitach. W takich układach do zderzeń dochodziłoby bardzo rzadko. Z obliczeń Jedamzika wynika, że z powodu opisanego zjawiska nawet we wszechświecie pełnym czarnych dziur, notowalibyśmy fale grawitacyjne równie rzadko co obecnie.

Co więcej Jedamzik oblicza, że pierwotne czarne dziury tworzą gromady o średnicy niemal 4 lat świetlnych. W takich gromadach może znajdować się około 1000 czarnych dziur. W centrum gromady skupiają się dziury o masie około 30 mas Słońca, na jej obrzeżach krążą mniej masywne czarne dziury. Takie gromady mogą znajdować się dosłownie wszędzie.

Prace Jedamzika niczego jeszcze nie przesądzają. One wypełniają luki w nieistniejącej teorii, mówi Carl Rodriguez, astrofizyk z Carnegie Mellon Univeristy. Zwolennicy hipotezy pierwotnych czarnych dziur mają jeszcze wiele do zrobienia. W sygnałach z LIGO obserwujemy pewne dziwne zjawiska, jednak wszystko, co dotychczas zarejestrowaliśmy, można wytłumaczyć istnieniem standardowego procesu ewolucji gwiazd.

Wygląda jednak na to, że istnienie bądź nieistnienie pierwotnych czarnych dziur zostanie dość szybko rozstrzygnięte. To nie jest nic w rodzaju teorii strun, gdzie dekadę czy trzy dekady później wciąż trwa dyskusja, stwierdza Chrisitan Byrnes z University of Sussex. Rosnąca czułość LIGO już wkrótce powinna pozwolić albo na wykrycie czarnej dziury o masie poniżej masy gwiazdowej, albo też na znalezienie ścisłego limitu minimalnej masy dla czarnych dziur.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, KopalniaWiedzy.pl napisał:

kwaki i gluony

"kwaki" - rozbawiła mnie ta literówka :D, to powinny być kwaki i gdaki :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe jakie właściwości mają tak małe CD. Mózg mi aż pulsuje od możliwości.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
7 godzin temu, Sławko napisał:

"kwaki" -

W końcu to KopalniaWiedzy. Tutaj poznajemy najnowsze osiągnięcia nauki. Nie powtarzamy banałów, które zna każde dziecko :P

  • Haha 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.
      Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.
      Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.
      Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.
      Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
      Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.
      Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje astronomów –  José Luis Bernal, Gabriela Sato-Polito i Marc Kamionkowski – uważa, że sonda New Horizons mogła zarejestrować rozpadające się cząstki ciemnej materii. Uważają oni, że niespodziewany nadmiar światła zarejestrowany przez sondę, może pochodzić z rozpadających się aksjonów, hipotetycznych cząstek ciemnej materii.
      Na optyczne promieniowanie tła składa się całe światło widzialne emitowane przez źródła znajdujące się poza Drogą Mleczną. Światło to może nieść ze sobą istotne informacje na temat struktury wszechświata. Problem w badaniu tego światła polega na trudności w jego odróżnieniu od światła, którego źródła znajdują się znacznie bliżej, szczególnie od światła Słońca rozproszonego na pyle międzyplanetarnym.
      Wystrzelona w 2006 roku sonda New Horizons znajduje się obecnie w Pasie Kuipera. Pył międzyplanetarny jest tam znacznie bardziej rozproszony niż bliżej Słońca. Niedawno sonda użyła instrumentu o nazwie Long Range Reconnaissance Imager (LORRI) do pomiaru światła. Ku zdumieniu specjalistów okazało się, że optyczne promieniowanie tła jest dwukrotnie bardziej jasne, niż należałoby się spodziewać z ostatnich badań dotyczących rozkładu galaktyk.
      Astronomowie z Uniwersytetu Johnsa Hopkinsa uważają, że ten nadmiar światła może pochodzić z rozpadu aksjonów. Uczeni, chcąc wyjaśnić wyniki obserwacji LORRI, zbadali model, w którym aksjony rozpadałyby się do fotonów. Obliczyli, jak rozkładałaby się energia fotonów z takiego rozpadu i w jaki sposób przyczyniałoby się to zarejestrowania nadmiarowego światła przez LORRI. Wyniki sugerują, że nadmiar fotonów mógłby pochodzić z aksjonów o masie mieszczącym się w zakresie 8–20 eV/c2. Powinny one dawać wyraźny sygnał w przyszłych pomiarach intensywności światła.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lekkie antyatomy mogą przebyć w Drodze Mlecznej duże odległości zanim zostaną zaabsorbowane, poinformowali na łamach Nature Physics naukowcy, którzy pracują przy eksperymencie ALICE w CERN-ie. Dodali oni do modelu dane na temat antyatomów helu wytworzonych w Wielkim Zderzaczu Hadronów. Pomoże to w poszukiwaniu cząstek antymaterii, które mogą brać swój początek z ciemnej materii.
      Fizycy potrafią uzyskać w akceleratorach cząstek lekkie antyatomy, jak antyhel czy antydeuter. Dotychczas jednak nie zaobserwowano ich w przestrzeni kosmicznej. Tymczasem z modeli teoretycznych wynika, że antyatomy, podobnie zresztą jak antyprotony, mogą powstawać zarówno w wyniku zderzeń promieniowania komicznego z materią międzygwiezdną, jak i podczas wzajemnej anihilacji cząstek antymaterii. Sygnałów takich poszukuje m.in. zbudowany przez CERN instrument AMS (Alpha Magnetic Spectrometer) zainstalowany na Międzynarodowej Kosmicznej.
      Jeśli jednak instrumenty naukowe zarejestrują lekkie antyatomy pochodzące z przestrzeni kosmicznej, skąd będziemy wiedzieli, że ich źródłem jest ciemna materia? Żeby to określić, naukowcy muszą obliczyć liczbę, a konkretne strumień pola, antyatomów, które powinny dotrzeć do instrumentu badawczego. Wartość ta zależy od źródła antymaterii, prędkości tworzenia antyatomów oraz ich anihilacji lub absorpcji pomiędzy źródłem powstania a instrumentem je rejestrującym. I właśnie ten ostatni element stał się przedmiotem badań naukowców skupionych wokół eksperymentu ALICE.
      Uczeni badali jak jądra antyhelu-3, który uzyskano w Wielkim Zderzaczu Hadronów, zachowują sią w kontakcie z materią. Uzyskane w ten sposób dane wprowadzili do publicznie dostępnego oprogramowania GALPROP, które symuluje rozkład cząstek kosmicznych, w tym antyjąder, w przestrzeni kosmicznej. Pod uwagę wzięli dwa scenariusze. W pierwszym z nich założyli, że źródłem antyhelu-3 są zderzenia promieniowania kosmicznego a materią międzygwiezdną, w drugim zaś, że są nim hipotetyczne cząstki ciemnej materii, WIMP (słabo oddziałujące masywne cząstki). W każdym z tych scenariuszy obliczali przezroczystość Drogi Mlecznej dla jądra antyhelu-3. Innymi słowy, sprawdzali, z jakim prawdopodobieństwem takie antyjądra mogą przelecieć przez Drogę Mleczną zanim zostaną zaabsorbowane.
      Dla modelu, w którym antyjądra pochodziły z WIMP przezroczystość naszej galaktyki wyniosła około 50%. Dla modelu interakcji promieniowania kosmicznego z materią międzygwiezdną wynosiła zaś od 25 do 90 procent, w zależności od energii antyjąder. To pokazuje, że w obu przypadkach antyjądra mogą przebyć olbrzymie odległości, liczone w kiloparsekach (1 kpc ≈ 3261 lat świetlnych), zanim zostaną zaabsorbowane.
      Jako pierwsi wykazaliśmy, że nawet jądra antyhelu-3 pochodzące z centrum galaktyki mogą dotrzeć w pobliże Ziemi. To oznacza, że ich poszukiwanie w przestrzeni kosmicznej jest bardzo dobrą metodą poszukiwania ciemnej materii, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badanie grawitacyjnych deformacji galaktyk karłowatych wydaje się wspierać zmodyfikowane teorie grawitacji, a nie teorię o istnieniu ciemnej materii. Ciemna materia to kluczowy element standardowego modelu kosmologicznego, a jej istnienie wynika z teorii względności Einsteina. Międzynarodowy zespół naukowy opublikował na łamach Monthly Notices of the Royal Astronomical Society wyniki badań, które są niekompatybilne z modelem Lambda-CDM – jednym z najpowszechniej uznawanych modeli kosmologicznych – a wspierają alternatywną zmodyfikowaną dynamikę newtonowską (MOND), która wyjaśnia pewne zjawiska bez odwoływania się do ciemnej materii.
      Zgodnie z powszechnie przyjmowanym poglądem ciemna materia stanowi około 85% materii we wszechświecie. Nie możemy jej dostrzec, jednak widzimy jej wpływ na otoczenie. Jej istnienie nie wyjaśnie jednak wszelkich obserwowanych zjawisk, a fakt, że jej nigdy nie wykryto, przyczynił się do powstania alternatywnych teorii.
      Uważa się, że ciemna materia tworzy halo galaktyk i wpływa na ich rozwój oraz ewolucję. Takie wielkie sferyczne halo ma otaczać też Drogę Mleczną.
      Elena Asencio z Uniwersytetu w Bonn, we współpracy z uczonymi z University of St Andrews w Szkocji, Europejskiego Obserwatorium Południowego w Chile i Uniwersytetu w Oulu w Finlandii poszukiwali halo wokół galaktyk karłowatych w Gromadzie w Piecu. Galaktyki takie, ze względu na swoją niską masę, są szczególnie podatne na działanie sił pływowych działających w samej gromadzie lub pochodzących z sąsiednich większych galaktyk. Działanie sił pływowych byłoby jednak zredukowane, gdyby gromada galaktyk była otoczona halo ciemnej materii. Spodziewany stopień zaburzeń zależy od praw grawitacji oraz obecności dominującego halo ciemnej materii. To zaś czyni galaktyki karłowate użytecznymi obiektami do testowania różnych modeli grawitacji, wyjaśniają autorzy badań.
      Naukowcy obserwowali galaktyki karłowate z Gromady w Piecu, a następnie próbowali odtworzyć zaobserwowane zjawiska za pomocą symulacji komputerowych opartych na standardowym modelu kosmologicznym, który zakłada istnienie ciemnej materii. Okazało się, że model ten nie pasuje do tych galaktyk. Zgodnie z nim galaktyki z Gromady w Piecu powinny zostać rozerwane.
      Uczeni, chcąc sprawdzić, co utrzymuje galaktyki, przeprowadzili kolejne symulacje, tym razem z wykorzystaniem zmodyfikowanej dynamiki newtonowskiej (MOND). W MOND zasady dynamiki Newtona zostały zmodyfikowane o nieliniową zależność siły od przyspieszenia. W 1983 roku Mordechaj Milgrom postanowił wyjaśnić rozbieżności pomiędzy przewidywanymi i obserwowanymi prędkościami orbitalnymi gwiazd bez odwoływania się do ciemnej materii. Zaproponował, że prawo mówiące iż siła jest wprost proporcjonalna do masy i odwrotnie proporcjonalna do kwadratu odległości ulega modyfikacji w momencie, gdy oddziaływanie jest bardzo słabe. MOND nie wyjaśnia problemu brakującej masy, ale za to pozwala na dobre przewidywanie rotacji galaktyk.
      Badania Asencio i jej zespołu pokazały, że na gruncie MOND – w przeciwieństwie do teorii zakładającej istnienie ciemnej materii – można odtworzyć zjawiska obserwowane w Gromadzie w Piecu.
      To już kolejne badania pokazujące, że przyjmując istnienie ciemnej materii nie można wyjaśnić wielu zjawisk, za to dobrze można je opisać na gruncie teorii alternatywnych. Musimy jednak pamiętać, że te teorie alternatywne również mają swoje ograniczenia i nie opisują dobrze zjawisk, które możemy opisać odwołując się do ciemnej materii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy pracujący przy projekcie GNOME, w skład którego wchodzą uczeni z Polski, Niemiec, Serbii, Izraela, Korei Południowej, Chin, Australii i USA, ogłosił pierwsze wyniki poszukiwań ciemnej materii za pomocą ogólnoświatowej sieci magnetometrów optycznych. We wspomnianych 8 krajach znajduje się 14 magnetometrów, a do obecnie opublikowanej analizy wykorzystano dane z 9 z nich.
      GNOME to skrót od Global Network of Optical Magnetometers for Exotic Physics Searches. Celem projektu jest wykrycie charakterystycznego sygnału, który powinien być generowany przez pola ciemnej materii. Właśnie opublikowano dane z miesiąca nieprzerwanej pracy GNOME. Co prawda sygnał z ciemnej materii nie został wykryty, jednak pomiary pozwoliły na ściślejsze określenie, w jakich zakresach należy sygnału poszukiwać.
      Obecnie wiemy, że wiele obserwowanych zjawisk, jak np. prędkość obrotową gwiazd w galaktykach czy spektrum promieniowania tła, można wyjaśnić przyjmując istnienie ciemnej materii. Jednak samej ciemnej materii nie udało się dotychczas wykryć.
      Niezwykle lekkie cząstki bozonowe to najbardziej obiecujący kandydaci na ciemną materię. Są wśród nich cząstki podobne do aksjonów (ALP). Można je rozpatrywać jako klasyczne pole oscylujące w określonej częstotliwości. Cechą szczególną takich pól bozonowych jest – wedle jednego z teoretycznie możliwych scenariuszy – że mogą tworzyć one pewne wzorce i struktury. To zaś powoduje, że ciemna materia może mieć różną gęstość w różnych miejscach, tworząc na przykład rodzaj ścian mniejszych niż galaktyka, ale większych niż Ziemia, mówi profesor Dmitry Budker z Uniwersytetu Gutenberga z Moguncji.
      Jeśli taka ściana napotka Ziemię, będzie się przez nią przesuwała i będzie po kolei wykrywana przez poszczególne magnetometry sieci GNOME, generując w nich charakterystyczne sygnały. Co więcej, sygnały te będą ze sobą skorelowane, w zależności od tego, jak szybko ta ściana będzie się przesuwała i kiedy dotrze do poszczególnych magnetometrów, wyjaśnia jeden ze współautorów badań, doktor Arne Wickenbrock.
      Sygnał w magnetometrach powinien powstać w wyniku interakcji ciemnej materii ze spinem atomów w urządzeniach. Zgromadzone w nich atomy są wzbudzane za pomocą lasera o określonej częstotliwości, dzięki czemu ich spiny zwrócone są w tym samym kierunku. Przechodzące przez magnetometr pole ciemnej materii powinno zaburzyć ułożenie spinów, co można zmierzyć.
      Hector Masia-Roig, doktorant pracujący w grupie profesora Budkera, porównuje atomy do chaotycznie tańczących osób. Gdy jednak „usłyszą” odpowiednią częstotliwość lasera, atomy koordynują swój taniec. Ciemna materia może wytrącić je z równowagi, a my możemy bardzo precyzyjnie zmierzyć te zaburzenia. Możliwość skorzystania z ogólnoświatowej sieci magnetometrów pozwoli na określenie, co zaburzyło spiny atomów. Gdy bowiem Ziemia będzie przechodziła przez ścianę ciemnej materii, atomy w poszczególnych stacjach będą stopniowo zaburzane. Dopiero gdy porównamy ze sobą sygnały ze wszystkich stacji, będziemy mogli stwierdzić, co je zaburzyło. Wracając do analogii z tańczącymi – będziemy mogli powiedzieć, czy do zaburzenia doszło dlatego, że pojawił się tancerz, który wypadł z rytmu i przeszkadzał innym, czy też było to zjawisko globalne, spowodowane przez ciemną materię.
      Wspomniane na wstępie pomiary całego miesiąca pracy GNOME pozwoliły na stwierdzenie, że statystycznie znaczący sygnał nie pojawia się w badanym zakresie masy od 1 do 100 000 femtoelektronowoltów (feV). To zaś oznacza, że naukowcy mogą zawęzić obszar poszukiwań masy cząstek ciemnej materii.
      W przyszłości naukowcy chcą skupić się na udoskonaleniu magnetometrów i metod analizy danych. Głównym celem ich pracy będzie zwiększenie stabilności działania magnetometrów, by mogły pracować dłużej bez przerw. Ponadto wykorzystywane obecnie atomy metali z grupy litowców zostaną zastąpione atomami gazów szlachetnych. Tak udoskonalony Advanced GNOME ma pozwolić na zwiększenie precyzji pomiarów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...