Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Najczulsze na świecie wykrywacze ciemnej materii trafiły do miejsca przeznaczenia

Recommended Posts

Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.

Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.

Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.

Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.

Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.

Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie z University of Southampton donoszą o zaobserwowaniu najpotężniejszej znanej kosmicznej eksplozji. Jest ona 10-krotnie jaśniejsza niż jakakolwiek znana supernowa i 3-krotnie jaśniejsza niż najpotężniejsze rozerwanie gwiazdy przez siły pływowe czarnej dziury. Eksplozję AT2021lwx naukowcy obserwują od trzech lat. To bardzo długo, w porównaniu np. z supernowymi, które są widoczne przez kilka miesięcy. Do AT2021lwx doszło przed 8 miliardami lat, gdy wszechświat liczył sobie około 6 miliardów lat.
      Specjaliści sądzą, że to, co obserwują to proces niszczenia olbrzymiej chmury gazu – tysiące razy większej od Słońca – przez czarną dziurę. Części chmury wpadły do czarnej dziury, a powstałe w wyniku tego fale uderzeniowe przemiszczają się przez resztę chmury, która otoczyła czarną dziurę, tworząc kształt obwarzanka.
      AT2021lwx została wykryta w 2020 roku przez Zwicky Transient Facility i potwierdzona przez Asteroid Terrestrial-impact Last Alert System. Te instalacje przeglądają nocne niebo w poszukiwaniu obiektów gwałtownie zmieniających jasność. Takie zmiany mogą wskazywać na obecność supernowej czy przelatujące komety lub asteroidy. Jednak w momencie wykrycia skala eksplozji nie była znana. Pojawienie się na niebie jasnego obiektu zostało zauważone przez algorytm poszukujący supernowych. Jednak supernowe nigdy nie trwają tak długo.
      Naukowcy przeprowadzili więc szereg badań za pomocą różnych teleskopów. Przeanalizowali spektrum światła, zmierzyli linie absorpcji i emisji, co pozwoliło im na określenie odległości do obiektu. Gdy już znamy odległość i wiemy, jak jasny się nam obiekt wydaje, możemy obliczyć jasność obiektu u źródła. Gdy to zrobiliśmy, zdaliśmy sobie sprawę, że jest on ekstremalnie jasny, mówi profesor Sebastian Hönig.
      Jedynymi obiektami, które dorównują AT2021lwx jasnością są kwazary, supermasywne czarne dziury, do których ciągle wpada gaz pędzący z olbrzymią prędkością. W przypadku kwazarów dochodzi do zmian jasności. Raz są jaśniejsze, raz ciemniejsze. Przyjrzeliśmy się danym archiwalnym, z dekady sprzed odkrycia AT2021lwx. Niczego tam nie było i nagle pojawia się najjaśniejszy obiekt we wszechświecie, dodaje profesor Mark Sullivan.
      Zjawisko można interpretować na wiele różnych sposobów, jednak najbardziej prawdopodobnym wyjaśnieniem jest niszczenie przez czarną dziurę gigantycznej chmury gazu, głównie wodoru. Naukowcy mają nadzieję, że w najbliższych latach dzięki nowym urządzeniom, jak Vera Rubin Observatory, znajdą więcej obiektów podobnych do AT2021lwx i będą mogli lepiej je zbadać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.
      Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.
      Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.
      Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.
      Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nie możemy bezpośrednio obserwować wczesnego wszechświata, ale być może będziemy w stanie obserwować go pośrednio, badając, w jaki sposób fale grawitacyjne z tamtej epoki wpłynęły na materię i promieniowanie, które obecnie widzimy, mówi Deepen Garg, student z Princeton Plama Physics Laboratory. Garg i jego promotor Ilya Dodin zaadaptowali do badań wszechświata technikę ze swoich badań nad fuzją jądrową.
      Naukowcy badali, w jaki sposób fale elektromagnetyczne rozprzestrzeniają się przez plazmę obecną w reaktorach fuzyjnych. Okazało się, że proces ten bardzo przypomina sposób rozprzestrzeniania się fal grawitacyjnych. Postanowili więc wykorzystać te podobieństwa.
      Fale grawitacyjne, przewidziane przez Alberta Einsteina w 1916 roku, zostały wykryte w 2015 roku przez obserwatorium LIGO. To zaburzenia czasoprzestrzeni wywołane ruchem bardzo gęstych obiektów. Fale te przemieszczają się z prędkością światła.
      Garg i Dodin, wykorzystując swoje spostrzeżenia z badań nad falą elektromagnetyczną w plazmie, opracowali wzory za pomocą których – jak mają nadzieję – uda się odczytać właściwości odległych gwiazd. W falach grawitacyjnych mogą być „zapisane” np. o gęstości materii, przez którą przeszły. Być może nawet uda się w ten sposób zdobyć dodatkowe informacje o zderzeniach gwiazd neutronowych i czarnych dziur.
      To miał być prosty, krótki, sześciomiesięczny program badawczy dla mojego studenta. Gdy jednak zaczęliśmy zagłębiać się w problem, okazało się, że niewiele o nim wiadomo i można na tym przykładzie wykonać pewne podstawowe prace teoretyczne, przyznaje Dodin.
      Naukowcy chcą w niedługiej przyszłości wykorzystać swoje wzory w praktyce. Zastrzegają, że uzyskanie znaczących wyników będzie wymagało sporo pracy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
      Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
      Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
      Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
      Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Troje astronomów –  José Luis Bernal, Gabriela Sato-Polito i Marc Kamionkowski – uważa, że sonda New Horizons mogła zarejestrować rozpadające się cząstki ciemnej materii. Uważają oni, że niespodziewany nadmiar światła zarejestrowany przez sondę, może pochodzić z rozpadających się aksjonów, hipotetycznych cząstek ciemnej materii.
      Na optyczne promieniowanie tła składa się całe światło widzialne emitowane przez źródła znajdujące się poza Drogą Mleczną. Światło to może nieść ze sobą istotne informacje na temat struktury wszechświata. Problem w badaniu tego światła polega na trudności w jego odróżnieniu od światła, którego źródła znajdują się znacznie bliżej, szczególnie od światła Słońca rozproszonego na pyle międzyplanetarnym.
      Wystrzelona w 2006 roku sonda New Horizons znajduje się obecnie w Pasie Kuipera. Pył międzyplanetarny jest tam znacznie bardziej rozproszony niż bliżej Słońca. Niedawno sonda użyła instrumentu o nazwie Long Range Reconnaissance Imager (LORRI) do pomiaru światła. Ku zdumieniu specjalistów okazało się, że optyczne promieniowanie tła jest dwukrotnie bardziej jasne, niż należałoby się spodziewać z ostatnich badań dotyczących rozkładu galaktyk.
      Astronomowie z Uniwersytetu Johnsa Hopkinsa uważają, że ten nadmiar światła może pochodzić z rozpadu aksjonów. Uczeni, chcąc wyjaśnić wyniki obserwacji LORRI, zbadali model, w którym aksjony rozpadałyby się do fotonów. Obliczyli, jak rozkładałaby się energia fotonów z takiego rozpadu i w jaki sposób przyczyniałoby się to zarejestrowania nadmiarowego światła przez LORRI. Wyniki sugerują, że nadmiar fotonów mógłby pochodzić z aksjonów o masie mieszczącym się w zakresie 8–20 eV/c2. Powinny one dawać wyraźny sygnał w przyszłych pomiarach intensywności światła.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...