Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Udało się manipulować dwoma bitami w pojedynczym atomie

Recommended Posts

Naukowcy z Uniwersytetu Technologicznego w Delft wykazali, że możliwe jest niezależne manipulowanie dwoma rodzajami magnetyzmu w atomach. Magnetyzm w atomach powstaje w wyniku orbitalnego oraz obrotowego ruchu elektronów. W tym pierwszym przypadku mowa jest o ruchu elektronu wokół jądra. Ruch obrotowy zaś to ruch elektronu wokół własnej osi. Jako, że każdy z tych rodzajów ruchu może odbywać się zgodnie z ruchem wskazówek zegara lub w stronę przeciwną, zatem może reprezentować 0 lub 1. Teoretycznie więc w atomie możemy zapisać 2 bity danych.

"W praktyce jednak jest to niezwykle trudne, gdyż jeśli zmienimy kierunek ruchu orbitalnego, niemal zawsze zmieni się kierunek ruchu obrotowego i vice versa", mówi główny autor najnowszych badań, Sander Otte.

Holendrzy, we współpracy z Hiszpanami i Chilijczykami dowiedli, że można odwrócić kierunek ruchu orbitalnego elektronu bez zmiany jego ruchu obrotowego. Osiągnęli to dzięki wykorzystaniu efektu Einsteina-de Haasa. Zgodnie z nim odwrócenie kierunku ruchu orbitalnego można skompensować przez niemierzalnie mały obrót środowiska. W tym przypadku był to kawałek metalu, którego część stanowi atom.

Naukowcy wykorzystali skaningowy mikroskop tunelowy, którego próbnik może manipulować pojedynczymi atomami. Zwykle atom ma kontakt z wieloma sąsiadującymi atomami, co zaburza jego magnetyzm. Otte i jego zespół odseparowali spin od ruchu orbitalnego atomu żelaza umieszczając go na pojedynczym niemagnetycznym atomie azotu. Dzięki temu mogli manipulować ruchem orbitalnym bez wpływania na spin elektronu.

Możliwość przechowywania bitów w pojedynczym atomie zwiększyłaby tysiące razy pojemność obecnych układów pamięci. Do tego jeszcze bardzo długa droga. Otte mówi, że w tej chwili głównym osiągnięciem, z którego naukowcy się bardzo cieszą, jest możliwość kontrolowania pojedynczych atomów oraz elektronów krążących wokół nich.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Jeśli atom trzeba odseparować a środowisko "niezauważalnie obrócić" to znaczy że te 2 bity nie zostały zapisane w atomie, lecz w środowisku. Inaczej mówiąc do ich zapisania nie wystarczy sam atom tylko atom wraz ze środowiskiem. A to żaden postęp.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Niekoniecznie żaden postęp... teraz wystarczy zmanipulować kolejny atom w tym samym środowisku i już będą 4 bity w jednym środowisku. 

Pozostaje tylko kwestia sprawności tj. ilości atomów możliwych do użycia w danym środowisku.

Share this post


Link to post
Share on other sites

A może to być ślepy zaułek, tak jak z formatem Blue Ray. Czy jak się to pisze, dla mnie nie warto nawet nazwy pamiętać...

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Z Teleskopu Webba na Ziemię zaczęły trafiać pierwsze zdjęcia przestrzeni kosmicznej oraz dane spektroskopowe. Gdy będziemy oglądać fascynujące obrazy warto pamiętać, że pochodzą one z urządzenia, które znajduje się niemal 3000 razy dalej od Ziemi niż Teleskop Hubble'a. Warto więc dowiedzieć się, jak do nas trafiły.
      Znaczna odległość Webba od Ziemi oznacza, że sygnał musi przebyć długą drogę, zanim do nas trafi, a cały system komunikacyjny musi działać naprawdę dobrze, gdyż nie przewiduje się misji serwisowych do Webba. Jeśli więc komunikacja zawiedzie, będziemy mieli w przestrzeni kosmicznej całkowicie bezużyteczny najdoskonalszy teleskop w idealnym stanie.
      Teleskop Kosmiczny Jamesa Webba (JWST) jest pierwszą misją kosmiczną, która wykorzystuje pasmo Ka do przesyłania tak dużej ilości danych. Już na etapie projektowania zdecydowano o wykorzystaniu Ka, części większego pasma K.
      Webb wysyła na Ziemię dane w paśmie o częstotliwości 25,9 Ghz, a prędkość transmisji może dochodzić do 28 Mb/s. Tak duża prędkość jest niezbędna, gdyż JWST może zebrać do 57 GB danych na dobę, chociaż rzeczywista ilość danych będzie zależała od zaplanowanych obserwacji. Dla porównania, Teleskop Hubble'a (HST) zbiera każdej doby nie więcej niż 2 GB danych.
      Pasmo Ka wybrano, gdyż kanałem tym można przesłać więcej danych niż powszechnie wykorzystywanymi w komunikacji kosmicznej pasmami X (7–11 GHz) czy S (2–4 GHz). Dodatkowo przeciwko wykorzystaniu pasma X przemawiał fakt, że antena pracująca w tym zakresie musiałaby być na tyle duża, że teleskop miałby problemy z utrzymaniem wysokiej stabilności, niezbędnej do prowadzenia obserwacji.
      Szybki transfer danych jest niezbędny na potrzeby przesyłania informacji naukowych. Webb korzysta też z dwóch kanałów pasma S. Jeden z nich, o częstotliwości 2.09 GHz to kanał odbiorczy, pracujący z prędkością 16 kb/s. Służy on do wysyłania do teleskopu poleceń dotyczących zaplanowanych obserwacji oraz przyszłych transmisji danych. Za pomocą zaś drugiego kanału, 2.27 GHz, pracującego w tempie 40 kb/s, Webb przysyła na Ziemię informacje dane inżynieryjne, w tym informacje o kondycji poszczególnych podzespołów.
      Łączność pomiędzy Ziemią a teleskopem nie jest utrzymywana przez 24 godziny na dobę. Dlatego też JWST musi przechowywać dane na pokładzie, zanim je nam przyśle. Magazynem danych jest 68-gigabajtowy dysk SSD, którego 3% pojemności zarezerwowano na dane inżynieryjne. Gdy już Webb prześle dane na Ziemię, oczekuje na potwierdzenie, że dotarły i wszystko z nimi w porządku. Dopiero po potwierdzeniu może wykasować dane z dysku, by zrobić miejsce na kolejne informacje. Specjaliści z NASA spodziewają się, że za 10 lat pojemność dysku, z powodu oddziaływania promieniowania kosmicznego, zmniejszy się do około 60 GB.
      Dane z Teleskopu Webba są odbierane na Ziemi przez Deep Space Network. DSN korzysta z trzech kompleksów anten znajdujących się w pobliżu Canberry, Madrytu i Barstow w Kalifornii. Z DNS korzysta wiele innych misji, w tym Parker Solar Probe, TESS czy Voyagery. Dlatego też JWST musi dzielić się z nimi ograniczonym czasem korzystania z anten. Wszystko to wymaga starannego planowania. Czas, w którym dana misja będzie mogła korzystać z anten DSN jest planowany z wyprzedzeniem sięgającym 12-20 tygodni. Wyjątkiem była sytuacja, gdy Teleskop Webba przygotowywał się do pracy, rozkładał poszczególne podzespoły, uruchamiał instrumenty, gdy były one sprawdzane i kalibrowane. Większość z tych czynności wymagała komunikacji w czasie rzeczywistym, wówczas więc Webb miał pierwszeństwo przed innymi misjami.
      Inżynierowie pracujący przy systemie komunikacji przykładali szczególną uwagę do jego niezawodności. Wiedzieli, że jeśli oni popełnią błąd, cała praca kolegów z innych zespołów pójdzie na marne. System komunikacji musi działać idealnie. Dlatego też wybrali znane rozwiązanie i odrzucili co najmniej dwie propozycje wykorzystania eksperymentalnej komunikacji laserowej.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
      W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
      Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
      Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
      Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
      Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
      Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
      W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
      Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
      Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
      Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Hybryda materii i antymaterii – atom helu, w którym elektron zastąpiono antyprotonem – wykazuje niespodziewaną reakcję na światło lasera, gdy zostaje zanurzony w nadciekłym helu, informują naukowcy z projektu ASACUSA na CERN. Uczeni zauważają, że ich odkrycie może stać się podstawą dla rozpoczęcia różnego rodzaju badań.
      Nasze eksperymenty sugerują, że hybrydowe atomy helu składające się z materii i antymaterii mogą zostać użyte do eksperymentów spoza fizyki cząstek, szczególnie zaś w badaniach fizyki materii skondensowanej, a może nawet w eksperymentach astrofizycznych, mówi rzecznik prasowy ASACUSA, Masaki Hori. Prawdopodobnie wykonaliśmy pierwszy krok w kierunku wykorzystania antyprotonów w badaniach materii skondensowanej.
      Naukowcy pracujący przy projekcie ASACUSA wykorzystują hybrydowe atomy helu do badania masy antyprotonu i porównywania jej z masą protonu. W takich hybrydowych atomach wokół jądra krąży antyproton i elektron, zamiast dwóch elektronów, wchodzących w skład zwykłego atomu helu. Atomy te uzyskuje się wprowadzając antyprotony do schłodzonego gazowego helu o niskiej gęstości.
      Dzięki niskiej temperaturze oraz gęstości możliwe jest łatwiejsze badanie reakcji hybrydowych atomów na światło lasera. Przy bardziej gęstym gazie i wyższych temperaturach linie spektralne przejścia antyprotonu lub elektronu pomiędzy poziomami energetycznymi są zbyt szerokie, przez co ich badanie jest bardzo trudne lub niemożliwe. A w ten właśnie sposób naukowcy próbują określić stosunek masy antyprotonu do elektronu.
      Dlatego też uczeni byli zaskoczeni, gdy okazało się, że w ciekłym helu, który ma znacznie większą gęstość niż hel w stanie gazowym, doszło do spadku szerokości linii spektralnych antyprotonu. Co więcej, gdy obniżyli temperaturę ciekłego helu do poziomu, poniżej której stał się on nadciekły, okazało się, że linie spektralne uległy dalszemu gwałtownemu zwężeniu.
      To było niespodziewane. Badana w paśmie optycznym reakcja hybrydowego atomu helu w nadciekłym helu jest wyraźnie różna od reakcji tego samego hybrydowego atomu w gazowym helu o wysokiej gęstości, mówi Anna Sótér ze Politechniki Federalnej w Zurichu (ETH Zurich).
      Uczeni sądzą, że zaskakujące zachowanie jest powiązane z promieniem orbitali, czyli odległością pomiędzy jądrem atomu a elektronami. W przeciwieństwie do wielu standardowych atomów, promień orbitali w hybrydowym atomie ulega jedynie niewielkim zmianom pod wpływem światła lasera. Dzięki temu laser nie wpływa na linie spektralne, nawet gdy atom jest zanurzony w ciekłym helu. To jednak, jak podkreślają autorzy badań, jedynie hipoteza, którą trzeba zweryfikować.
      Zaskakujące odkrycie niesie ze sobą liczne konsekwencje. Po pierwsze daje nadzieję na stworzenie innych hybrydowych atomów helu, jak np. pionowe (od cząstki pion) atomy helu zbudowane z różnych cząstek antymaterii i cząstek egzotycznych. Posłużyły by one do bardziej szczegółowych pomiarów masy cząstek. Po drugie, znaczące zwężenie linii spektralnych w nadciekłym helu sugeruje, że hybrydowe atomy helu mogą zostać użyte do badania materii nadciekłej i innych skondensowanych faz materii. W końcu zaś, tak wąskie linie spektralne mogą zostać wykorzystane do poszukiwania antyprotonów i antydeuteronów pochodzących z przestrzeni kosmicznej. Badania takie można by prowadzić na orbicie okołoziemskiej lub w laboratoriach umieszczonych w balonach latających na dużych wysokościach. Jednak zanim się one rozpoczną, konieczne będzie pokonanie licznych przeszkód technicznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas zakończonego właśnie sezonu 2021/22 ogólnopolskiej Akcji Karmnik studenci z Koła Naukowego Biologów Uniwersytetu w Białymstoku (UwB) zaobrączkowali najwięcej ptaków. Jak podkreślono w komunikacie uczelni, jeszcze jeden osobnik - i byłby okrągły tysiąc. W ich sieci ornitologiczne schwytały się też rekordowe liczby czyżów, dzwońców i grubodziobów.
      XVI edycja akcji rozpoczęła się 4 grudnia, a zakończyła wraz z lutym. Zgłosiły się liczne drużyny karmnikowe, które co 2 tygodnie prowadziły odłowy. Zaplanowano je na 4-5 oraz 18-19 grudnia, 1-2, 15-16 i 29-30 stycznia, a także na 12-13 i 26-27 lutego.
      W sieci ornitologiczne studentów z UwB wpadło 1318 ptaków, z czego 999 nie miało jeszcze obrączek. Oprócz tego odnotowano 319 kolejnych odłowów. Były to tzw. retrapy i kontrole, a więc osobniki, którym kiedyś założono obrączki przy studenckich karmnikach albo w innych miejscach.
      Ptakom sprzyjają ogródki, łagodna zima i miejska wyspa ciepła
      Wg dr. Krzysztofa Deoniziaka, opiekuna sekcji ornitologicznej Koła Naukowego Biologów, istnieje parę przyczyn, dla których w pobliżu kampusu UwB odławia się tyle ptaków. Po pierwsze, nieopodal znajdują się zarówno pozostałości, jak i nadal użytkowane duże ogrody działkowe. Ptaki mogą tu znaleźć sporo pokarmu i odpocząć podczas migracji. Po drugie, z powodu łagodnej zimy dochodzi do pewnych zaburzeń w migracjach ptaków. Brak stałej i grubej pokrywy śnieżnej nie zmusza ich do dalekiej wędrówki na zimowiska. A obszary miejskie (chociażby z powodu wspomnianych wcześniej działek i przydomowych ogrodów) są atrakcyjnym żerowiskami.
      Nie bez znaczenia jest też wpływ miejskiej wyspy ciepła. Skoro ptaki mogą przetrwać tutaj, niektórym gatunkom zwyczajnie nie kalkuluje się wędrówka na południe lub zachód kontynentu.
      Statystyki żaków z Białegostoku
      Gdy przyjrzymy się statystykom, okaże się, że Koło Naukowe Biologów UwB (Koło Naukowe Biologów UwB i przyjaciele) złapało w sieci 14 gatunków. Niekwestionowane 1. miejsce przypadło bogatkom (387). Na drugim miejscu uplasowały się czyże (273), a na trzecim dzwońce (136). Tuż za podium znalazły się zaś grubodzioby (116). Spośród liczniej reprezentowanych gatunków warto wymienić jeszcze modraszkę (64).
      Jak wspominaliśmy na początku, odłowy czyżów, dzwońców i grubodziobów okazały się rekordowe w skali kraju.
      Stali bywalcy i rzadko odławiane gatunki
      Co ciekawe, niektóre osobniki regularnie pojawiają się przy studenckich karmnikach. Pewną bogatkę zaobrączkowano, na przykład, w 2017 r., a później odłowiono ponownie aż 5-krotnie. Innym powracającym przypadkiem jest dzięcioł duży, który został zaobrączkowany w 2016 r. i wpadł w sieci ornitologiczne jeszcze 2-krotnie (rok później i w 2021 r.).
      W nasze sieci w tym sezonie wpadały również ciekawe, rzadko odławiane gatunki. Np. dwie czeczotki, które nie złapały się nigdzie indziej w Polsce, dzięcioł średni, krogulec. Były też cztery zięby - ptaki, które jeszcze kilka lat temu raczej odlatywały na południe. Teraz obserwujemy je u nas zimą i odławiamy coraz częściej, co pokazuje zachodzące zmiany klimatyczne – opowiada Anna Winiewicz, prezeska Koła Naukowego Biologów UwB.
      Podsumowanie sezonu 2021/22
      Na witrynie Akcji Karmnik można się zapoznać zarówno z wynikami zbiorczymi, jak i ze statystykami poszczególnych odłowów. W tym sezonie złapaliśmy ponad 11.000 [11.620] ptaków z 37 gatunków! Samych bogatek trafiło się ponad 4 tysiące, modraszek ponad tysiąc. Dzwoniec wylądował na czwartym miejscu, zaraz za czyżami - ponad 400 osobników obu gatunków. Piątym najchętniej przylatującym do karmnika ptakiem był grubodziób. Zabrakło dwóch grubków, aby było 400. Mieliśmy tylko dwa ptaki z zagranicy. Trafiło się parę ciekawych ptaków, jak srokosz i sroka, ale w przyszłym sezonie będą już wliczone w listę ptaków karmnikowych - podsumowano.
      W ramach Akcji Karmnik ptaki obrączkuje się pod okiem licencjonowanych obrączkarzy. Poza tym są one mierzone i opisywane. Dzięki temu można zbierać dane ujawniające skład gatunkowy i liczebność ptaków przylatujących do karmników w różnych regionach kraju.
      Dane ornitologiczne trafią do Stacji Ornitologicznej Muzeum i Instytutu Zoologii PAN w Gdańsku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na University of Central Florida powstał pierwszy w historii oscyloskop optyczny. Urządzenie może zrewolucjonizować technologie komunikacyjne, od smartfonów po internet. Skonstruowane na UCF urządzenie mierzy pole elektryczne światła zamieniając oscylacje światła w sygnał elektryczny.
      Dotychczas pomiary pola elektrycznego światła były poważnym problemem ze względu na olbrzymie tempo jego oscylacji. Najbardziej zaawansowane techniki pomiarowi, wykorzystywane w urządzeniach elektronicznych i telekomunikacyjnych, pozwalają na pomiar częstotliwości rzędu gigaherców. Pokrywa to spektrum radiowe i mikrofalowe promieniowania elektromagnetycznego. Jednak światło oscyluje ze znacznie większa częstotliwością. Możliwe jest więc upakowanie w nim znacznie większej ilości informacji niż robimy to obecnie. Jednak nie dysponujemy narzędziami, które by to umożliwiały. Obecne oscyloskopy dokonują uśrednionych pomiarów w ramach impulsu światła. Nie potrafią odróżnić poszczególnych dolin i grzbietów fali. Gdybyśmy zaś byli w stanie mierzyć pojedyncze doliny i grzbiety, moglibyśmy kodować w nich informacje
      Dzięki włóknom optycznym możemy korzystać ze światła do przesyłania informacji, ale wciąż jesteśmy ograniczeni prędkością oscyloskopów, mówi profesor Michael Chini. Nasz oscyloskop optyczny może zwiększyć prędkość przekazywania informacji nawet o około 10 000 razy.
      Uczeni z Florydy zbudowali swoje urządzenie i zaprezentowali jego możliwości dokonując w czasie rzeczywistym pomiarów pól elektrycznych indywidualnych impulsów światła laserowego. W kolejnym etapie badań będą chcieli sprawdzić, gdzie leży nieprzekraczalna granica prędkości pomiaru przy wykorzystaniu ich techniki.
      Swoje badania naukowcy opisali na łamach Nature Photonics.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...