Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Udało się manipulować dwoma bitami w pojedynczym atomie

Rekomendowane odpowiedzi

Naukowcy z Uniwersytetu Technologicznego w Delft wykazali, że możliwe jest niezależne manipulowanie dwoma rodzajami magnetyzmu w atomach. Magnetyzm w atomach powstaje w wyniku orbitalnego oraz obrotowego ruchu elektronów. W tym pierwszym przypadku mowa jest o ruchu elektronu wokół jądra. Ruch obrotowy zaś to ruch elektronu wokół własnej osi. Jako, że każdy z tych rodzajów ruchu może odbywać się zgodnie z ruchem wskazówek zegara lub w stronę przeciwną, zatem może reprezentować 0 lub 1. Teoretycznie więc w atomie możemy zapisać 2 bity danych.

"W praktyce jednak jest to niezwykle trudne, gdyż jeśli zmienimy kierunek ruchu orbitalnego, niemal zawsze zmieni się kierunek ruchu obrotowego i vice versa", mówi główny autor najnowszych badań, Sander Otte.

Holendrzy, we współpracy z Hiszpanami i Chilijczykami dowiedli, że można odwrócić kierunek ruchu orbitalnego elektronu bez zmiany jego ruchu obrotowego. Osiągnęli to dzięki wykorzystaniu efektu Einsteina-de Haasa. Zgodnie z nim odwrócenie kierunku ruchu orbitalnego można skompensować przez niemierzalnie mały obrót środowiska. W tym przypadku był to kawałek metalu, którego część stanowi atom.

Naukowcy wykorzystali skaningowy mikroskop tunelowy, którego próbnik może manipulować pojedynczymi atomami. Zwykle atom ma kontakt z wieloma sąsiadującymi atomami, co zaburza jego magnetyzm. Otte i jego zespół odseparowali spin od ruchu orbitalnego atomu żelaza umieszczając go na pojedynczym niemagnetycznym atomie azotu. Dzięki temu mogli manipulować ruchem orbitalnym bez wpływania na spin elektronu.

Możliwość przechowywania bitów w pojedynczym atomie zwiększyłaby tysiące razy pojemność obecnych układów pamięci. Do tego jeszcze bardzo długa droga. Otte mówi, że w tej chwili głównym osiągnięciem, z którego naukowcy się bardzo cieszą, jest możliwość kontrolowania pojedynczych atomów oraz elektronów krążących wokół nich.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli atom trzeba odseparować a środowisko "niezauważalnie obrócić" to znaczy że te 2 bity nie zostały zapisane w atomie, lecz w środowisku. Inaczej mówiąc do ich zapisania nie wystarczy sam atom tylko atom wraz ze środowiskiem. A to żaden postęp.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niekoniecznie żaden postęp... teraz wystarczy zmanipulować kolejny atom w tym samym środowisku i już będą 4 bity w jednym środowisku. 

Pozostaje tylko kwestia sprawności tj. ilości atomów możliwych do użycia w danym środowisku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A może to być ślepy zaułek, tak jak z formatem Blue Ray. Czy jak się to pisze, dla mnie nie warto nawet nazwy pamiętać...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na łamach Physical Review Research ukazał się artykuł, którego autorzy informują o skonstruowaniu urządzenia generującego energię elektryczną z... ruchu obrotowego Ziemi. Christopher F. Chyba (Princeton University), Kevin P. Hand (Jet Propulsion Laboratory) oraz Thomas H. Chyba (Spectral Sensor Solutions) postanowili przetestować hipotezę, zgodnie z którą energię elektryczną można generować z ruchu obrotowego Ziemi za pomocą specjalnego urządzenia wchodzącego w interakcje z ziemskim polem magnetycznym.
      W 2016 roku Christopher Chyba i Kevin Hand opublikowali na łamach Physical Review Applied artykuł, w którym rozważali możliwość użycia ruchu obrotowego Ziemi i jej pola magnetycznego do generowania energii elektrycznej. Artykuł został skrytykowany, gdyż obowiązując teorie wskazywały, że każde napięcie elektryczne wygenerowane w takiej sytuacji zostanie zniwelowane wskutek przemieszczenia się elektronów podczas tworzenia pola elektrycznego.
      Naukowcy zaczęli więc szukać sposobów na uniknięcie niwelacji napięcia. Żeby sprawdzić swoje pomysły stworzyli urządzenie złożone z cylindra z ferrytu manganowo-cynkowego, który działał jak osłona magnetyczna. Cylinder umieścili na linii północ-południe pod kątem 57 stopni. W ten sposób był on zorientowany prostopadle do ruchu obrotowego planety i ziemskiego pola magnetycznego. Na obu końca cylindra umieścili elektrody. Pomiary wykazały, że w ten sposób wygenerowali napięcie elektryczne rzędu 18 mikrowoltów, którego nie byli w stanie przypisać do żadnego innego źródła, niż ruch obrotowy Ziemi.
      Eksperyment odbywał się w ciemności, by uniknąć efektu fotoelektrycznego, uczeni wzięli pod uwagę napięcie, jakie mogło się pojawić w wyniku różnicy temperatur pomiędzy oboma końcami cylindra. Zauważyli też, że napięcie – zgodnie z przewidywaniami – nie pojawia się przy innych ustawiniach cylindra. Takie same wyniki uzyskano podczas badań w innej lokalizacji o podobnym środowisku geomagnetycznym.
      Eksperyment nie został jeszcze powtórzony przez inne zespoły badawcze, które mogłyby sprawdzić, czy zmierzone napięcie nie jest wynikiem zjawiska, którego trzej naukowcy nie wzięli pod uwagę. Autorzy badań stwierdzają, że jeśli uzyskane przez nich wyniki zostaną potwierdzone, warto będzie rozpocząć prace nad zwiększeniem uzyskiwanego napięcia do bardziej użytecznego poziomu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W latach 1993–2010 ludzie wypompowali tak olbrzymią ilość wód podziemnych, że doprowadziło to do... przesunięcia osi Ziemi i biegunów o niemal 80 centymetrów. Spowodowane działalnością człowieka zmiany w nachyleniu osi planety są takie, jak zmiany spowodowane w tym samym czasie przez topnienie lodów Grenlandii.
      Oś Ziemi to prosta, która jest osią obrotu własnego planety. Wyznacza ona bieguny geograficzne. Ruch obrotowy naszej planety jest bardzo skomplikowany. Obejmuje kwestię zarówno ruchu osi obrotu Ziemi w przestrzeni, w jej wnętrzu, nakładają się na to zmiany prędkości obrotowej, zjawisko precesji oraz nutacji, czyli kołysania się chwilowej osi obrotu. Jednym z najważniejszych elementów tego kołysania się jest nutacja swobodna o okresie Chandlera wynoszącym ok. 1,2 roku. W tym czasie oś obrotu Ziemi przesuwa się średnio o około 9 metrów. I właśnie na to przesunięcie miała wpływ ostatnia działalność człowieka.
      Naukowcy z Korei Południowej, Australii, Chin i USA oszacowali, że w latach 1993–2010 ludzie wypompowali spod ziemi 2150 gigaton – czyli 2 biliony 150 miliardów ton – wody, a związany z tym wzrost poziomu oceanu wynosił ok. 0,3 mm/rok. Z przeprowadzonych przez nich obliczeń wynika, że te zmiany rozkładu masy na naszej planecie spowodowały przesuwanie się osi Ziemi, a zatem i biegunów, o 4,36 cm na rok, czyli w sumie o 78,48 cm w badanym okresie. Wypompowana woda odpowiadała za 6,24 mm wzrostu poziomu oceanów. Clark Wilson z University of Texas w Austin mówi, że szczególnie silny wpływ ma to, co dzieje się z wielkimi podziemnymi zbiornikami wody na średnich szerokościach geograficznych. Jednym czynnikiem, który wpływa na wspomniane przesunięcia biegunów bardziej, niż zmiany w podziemnych zasobach wody są wciąż trwające ruchy izostatyczne, czyli unoszenie się mas skalnych uwolnionych od ciężaru lodu po ostatnim zlodowaceniu.
      Obliczenia pokazują, jak wiele wody ludzie wypompowują spod ziemi. Same cyfry nie są zbyt istotne. Istotny jest fakt, że masa przemieszczanej przez człowieka wody jest tak gigantyczna, iż ma wpływ na zmianę biegunów geograficznych planety.
      Warto przy tym pamiętać, że pod powierzchnią Ziemi znajduje się znacznie więcej wody, niż do niedawna sądzono.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się zmierzyć spin elektronu w materiale. Osiągnięcie uczonych z Uniwersytetów w Bolonii, Wenecji, Mediolanie, Würzburgu oraz University of St. Andrews, Boston College i University of Santa Barbara może zrewolucjonizować sposób badania i wykorzystania kwantowych materiałów w takich dziedzinach jak biomedycyna, energia odnawialna czy komputery kwantowe. Pomiar spinu w kontekście topologii materiału, w którym był mierzony, był możliwy dzięki wykorzystaniu promieniowania synchrotronowego oraz nowoczesnym technikom modelowania zachowania materii.
      Profesor Domenico di Sante z Uniwersytetu w Bolonii wyjaśnia: Na zachowanie elektronów w materiałach mają wpływ pewne właściwości kwantowe, determinujące ich spin w materiale, w którym się znajdują. Tak jak na tor ruchu światła we wszechświecie ma wpływ obecność gwiazd, ciemnej materii czy czarnych dziur, które zaginają czasoprzestrzeń.
      Właściwości elektronu znamy od dawna, jednak dotychczas nikt nie bezpośrednio nie zmierzył „topologicznego spinu” elektronu. Uczeni z Włoch, Niemiec, Wielkiej Brytanii i USA wykorzystali efekt znany jako dichroizm kołowy. Zjawisko to polega na różnej absorpcji przez substancje światła spolaryzowanego kołowo prawo- i lewoskrętnie. W swoich badaniach skupili się na metalach kagome. To materiały, w których atomy tworzą – znany z tradycyjnego japońskiego koszykarstwa kagome – wzór składający się z sieci trójkątów o wspólnych wierzchołkach. Ta nietypowa geometria atomów powoduje, że elektrony zachowują się w takim materiale w sposób nietypowy, co pozwala badać niezwykłe zjawiska kwantowe. Metale kagome służą m.in. do badań nad nadprzewodnictwem wysokotemperaturowym. Pierwsze eksperymenty z nimi przeprowadzono w USA w 2018 roku.
      Teraz dwuwarstwowe metale kagome XV6Sn6 – gdzie X oznacza pierwiastek ziem rzadkich, tutaj były to terb, skand i holm – posłużyły do badania topologicznego spinu elektronu. Było to możliwe dzięki połączeniu eksperymentu z analizą teoretyczną. Teoretycy przeprowadzili najpierw złożone symulacje kwantowe na potężnych superkomputerach i poinstruowali eksperymentatorów, w którym miejscu materiału powinni mierzyć dichroizm kołowy, wyjaśnia Di Sante.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcom po raz pierwszy udało się zaprezentować przełącznik wykonany z pojedynczej molekuły fullerenu. Dzięki precyzyjnie dostrojonemu laserowi międzynarodowy zespół uczonych był w stanie wykorzystać molekułę fullerenu do zmiany drogi elektronu w przewidywalny sposób. Przełącznik, w zależności od impulsów lasera, działał od 3 do 6 rzędów wielkości szybciej niż przełączniki wykorzystywane obecnie w układach scalonych.
      Dzięki fullerenom mogą zatem powstać komputery znacznie szybsze niż to, co można osiągnąć za pomocą współczesnej elektroniki. Można je będzie wykorzystać też do obrazowania medycznego o niedostępnej obecnie rozdzielczości.
      Wiele dziesięcioleci temu fizycy odkryli, że w obecności pól elektrycznych oraz światła molekuły emitują elektrony. Współautor najnowszych badań, Hirofumi Yanagisawa w Uniwersytetu Tokijskiego wraz z zespołem, najpierw stworzył hipotezę dotyczącej emisji elektronów przez wzbudzone fullereny w zależności od rodzaju wzbudzającego je impulsu laserowego. Następnie międzynarodowa grupa naukowa dowiodła jej słuszności.
      Za pomocą krótkiego impulsu czerwonego lasera uzyskaliśmy kontrolę nad sposobem kierowania przez molekułę nadchodzącego elektronu. W zależności od impulsu, elektron może pozostać na swoim kursie, lub też zmienić trasę w przewidywalny sposób. [...] Sądzimy, że możemy osiągnąć tutaj milion razy krótszy czas przełączania niż za pomocą klasycznego tranzystora. To zaś może przełożyć się na zwiększenie wydajności komputerów. Jednak równie ważne byłoby dostrojenia lasera tak, by molekuła fullerenu mogła działać jednocześnie jak wiele przełączników. Uzyskalibyśmy w ten sposób odpowiednik wielu tranzystorów w pojedynczej molekule. To zwiększyłoby złożoność systemu bez zwiększania jego fizycznych rozmiarów, wyjaśnia Yanagisawa.
      Fullereny to cząsteczki składające się z parzystej liczby atomów węgla, tworzące zamkniętą, pustą w środku bryłę. O ich potencjalnym zastosowaniu w informatyce pisaliśmy już przed 15 laty. Jak się okazuje, możliwe jest precyzyjne manipulowanie orientacją fullerenów za pomocą precyzyjnych ultrakrótkich impulsów laserowych, decydując w ten sposób, jak dojdzie do emisji elektronu. To technika podobna do tego, jak w mikroskopii fotoelektronów (PEEM) uzyskuje się obrazy. Jednak rozdzielczość PEEM sięga maksymalnie około 10 nanometrów, czyli 10 miliardowych części metra. Fullerenowy przełącznik pozwoliłby na osiągnięcie rozdzielczości około 300 pikometrów, czyli 300 bilionowych części metra, dodaje Yanagisawa.
      Autorzy badań dodają, że jeśli udałoby się spowodować, by pojedyncza molekuła fullerenu działała jak wiele przełączników jednocześnie, to niewielka sieć takich molekuł przeprowadzałaby obliczenia znacznie szybciej niż dzisiejsze procesory. Jednak do pokonania jest wiele przeszkód, jak np. odpowiednie zminiaturyzowanie laserów. Tak czy inaczej mogą minąć lata, zanim fullerenowe przełączniki trafią do układów scalonych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tysiące kilometrów pod naszymi stopami znajduje się wewnętrzne jądro Ziemi. To struktura o średnicy ponad 1200 km zbudowana z żelaza w formie stałej. Dwoje badaczy z Uniwersytetu w Pekinie stwierdziło właśnie, że dosłownie przed kilkunastu laty ruch obrotowy jądra niemal ustał, a następnie zaczęło się ono obracać w drugą stronę i obecnie obraca się w kierunku przeciwnym do ruchu obrotowego Ziemi.
      Wciąż niewiele wiemy o samym jądrze oraz jego ruchu, a wiedzę tę zdobywamy badając fale sejsmiczne przechodzące przez środek planety. Yi Yang i Xiaodong Song z Pekinu najpierw przeanalizowali dane pochodzące z początku lat 90. XX wieku, a następnie porównali je danymi zbieranymi od 1964 roku. Z ich analiz wynika, że w 2009 roku ruch obrotowy jądra wewnętrznego niemal się zatrzymał, a następnie zaczęło się ono obracać w przeciwnym kierunku.
      Sądzimy, że jądro wewnętrzne obraca się raz w jedną, raz w drugą stronę, względem powierzchni Ziemi, mówią naukowcy. Ich zdaniem cały cykl trwa około 70 lat, co oznacza, że do zmiany kierunku ruchu obrotowego jądra dochodzi co 35 lat. Z badań wynika, że poprzednia zmiana miała miejsce na początku lat 70. XX wieku, a kolejna zajdzie w połowie lat 40. XXI wieku.
      Inni eksperci przestrzegają jednak, przed wyciąganiem zbyt pochopnych wniosków. Przypominają, że wiele rzeczy dotyczących budowy wnętrza Ziemi jest dla nas tajemnicą i istnieją liczne hipotezy dotyczące tej kwestii. To bardzo dobre badania przeprowadzone przez świetnych naukowców. Użyli oni wielu danych, ale – moim zdaniem – żaden z modeli nie pasuje dobrze do wszystkich danych, jakimi dysponujemy, mówi John Vidale, sejsmolog z University of Southern California. Vidale sam jest autorem ubiegłorocznej pracy, w której stwierdza, że jądro zmienia kierunek ruchu co sześć lat. W swoich badaniach opierał się on na falach sejsmicznych wygenerowanych podczas dwóch eksplozji jądrowych z końca lat 60. i początku lat 70. Uczony przypomina też, że istnieją dane sugerujące, iż jądro obracało się w latach 2001–2013, a obecnie jest niemal nieruchome. Z kolei Hrvoje Tkalcic z Australijskiego Uniwersytetu Narodowego jest autorem badań mówiących, że cały cykl zmiany ruchu obrotowego jądra trwa 20–30 lat.
      Geofizycy porównują swoje próby zbadania wnętrza Ziemi do próby badania wnętrza organizmu bez możliwości rozcięcia pacjenta czy przeprowadzenia obrazowania tomografem. Niektórzy mówią, że jądro wewnętrzne może zawierać jeszcze jedno jądro. Coś tam się dzieje i w końcu się tego dowiemy. Ale może to zająć kolejną dekadę, stwierdza Vidale.
      Yang i Song na łamach swojej pracy stwierdzają, że zaobserwowane przez nich zmiany kierunku ruchu obrotowego jądra są zgodne z innymi obserwacjami, szczególnie tymi dotyczącymi długości dnia i pola magnetycznego planety. Ich zdaniem to dowód, że wszystkie warstwy planety są ze sobą połączone dynamicznymi interakcjami, zachodzącymi prawdopodobnie za pośrednictwem sprzężenia grawitacyjnego i zachowania momentu pędu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...