Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Przed około 359 milionami lat Ziemia doświadczyła epizodu wymierania, podczas którego niemal całkowicie wyginęły akritarchy i ryby pancerne. To późnodewońskie wymieranie, zwane kryzysem Hangenberg, trwało około 300 000 lat. Brian Field z University of Illinois Urbana-Champaign upublicznił artykuł [PDF], w którym dowodzi, że za wymieranie to odpowiada... wybuch supernowej.

Uważa się, że kryzys Hangenberg był spowodowany długotrwałym ubytkiem ozonu, przez co do Ziemi docierało zbyt dużo szkodliwego promieniowania ultrafioletowego ze Słońca. Jedną z możliwych przyczyn ubytku ozonu jest pojawienie się w niższych warstwach atmosfery dużej ilości pary wodnej, która może brać udział w cyklu pojawiania się wolnych rodników tlenku chloru, który niszczy ozon. Jednak hipoteza taka jest o tyle wątpliwa, że para wodna mogłaby utrzymywać się w atmosferze zbyt krótko, by wywołać wymieranie trwające 300 000 lat. Ponadto taki mechanizm spowodowałby redukcję ozonu na ograniczonym terenie geograficznym, tymczasem wiemy, że kryzys Hangenberg objął całą Ziemię.

Brian Field uważa, że przyczyną wymierania mógł być wybuch pobliskiej supernowej. Podczas takiego wydarzenia uwalniana jest olbrzym ilość promieniowania ultrafioletowego, X czy gamma. Promieniowanie kosmiczne z pobliskiej supernowej mogłoby oddziaływać na Ziemię przez 100 000 lat. To z kolei doprowadziłoby do długotrwałej globalnej utraty warstwy ozonowej. Hipoteza z supernową wyjaśnia zarówno skalę jak i czas trwania kryzysu Hangenberg.

Z wyliczeń zespołu Fielda wynika, że za wspomniane wymieranie może być odpowiedzialny wybuch supernowej Typu II. Taki wybuch w odległości mniejszej niż 10 parseków (33 lata świetlne) od Ziemi prawdopodobnie zniszczyłby życie na naszej planecie.

Dlatego też naukowcy sądzą, że do eksplozji doszło w odległości około 20 parseków. To wystarczająco blisko, by zabić wiele gatunków, jednak za daleko, by całkowicie zniszczyć życie.

Dowodami na takie wydarzenie mają być radioaktywne izotopy, które powstały podczas wybuchu i opadły na Ziemię. Część z tych izotopów na na tyle długi okres połowicznego rozpadu, że powinny nadal być obecne w osadach z przełomu dewonu i karbonu. Takim pierwiastkiem jest np. pluton-244. Jego znalezienie w osadach z tego okresu byłoby silnym poparciem hipotezy Fielda.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Muszę przyznać, że przestałem się czuć bezpiecznie. @Astro Jakie są szansę na supernową typu II poniżej 50 parseków w ciągu najbliższych powiedzmy 20 lat? Bo nie wiem czy nie kupić paru ton ołowiu i folii aluminiowej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jak masz taki krótki horyzont zdarzeń to taniej będzie kupić worki z ryżem, które też zatrzymują promieniowanie UV ;) Podobno ryż można trzymać ze 35 lat w hermetycznych torbach mylarowych z pochłaniaczami tlenu. Do tego ciecierzyca albo fasola i sól, miód albo jakieś inne przyprawy, które też można przepakować hermetycznie w mylar ;)

Z artykułu wynika, że nawet życie w oceanach nie uchroniło się, co nie dziwi, bo promieniowanie ubiło łańcuch pokarmowy przy samym dole.

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
25 minut temu, cyjanobakteria napisał:

Podobno ryż można trzymać ze 35 lat w hermetycznych torbach mylarowych z pochłaniaczami tlenu. Do tego ciecierzyca albo fasola i sól, miód albo jakieś inne przyprawy, które też można przepakować hermetycznie w myla

Większe zaufanie mam do jąder o dużych liczba atomowych. O jedzenie się nie martwię, bo wszędzie będzie dużo pieczystego. Sorry za głupawkę, ale właśnie pracuję z domu po vpn do roboty gdzie za siedmioma firewallami i siedmioma rdpami jest siedem kamer z których muszę pobrać siedem godzin materiału. To bardzo sprzyja czarnemu humorowi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
10 hours ago, Jajcenty said:

Sorry za głupawkę, ale właśnie pracuję z domu po vpn do roboty gdzie za siedmioma firewallami i siedmioma rdpami jest siedem kamer z których muszę pobrać siedem godzin materiału.

Próbowałeś Emacsem przez Sendmail? :lol::) (niszowy dowcip)

  • Dzięki! (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 godzinę temu, cyjanobakteria napisał:

Próbowałeś Emacsem przez Sendmail?

Od tego zaczynam dzień... ;)

2 godziny temu, Astro napisał:

Nie przejmowałbym się specjalnie. Większe prawdopodobieństwo jest chyba, że cegłówka spadnie Ci na głowę.

Ok. Znacznie mi lepiej...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
38 minut temu, Astro napisał:

Dla ścisłości jednak może przypomnę:

To skąd na Ziemi uran? Wychodzi na to, że materiał, którego nas ulepiono ma więcej składników niż tylko gruz po supernowej. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 2.08.2020 o 18:01, Astro napisał:

Dla ścisłości jednak może przypomnę:

Na załączonym obrazie widać, że np Ołów był wytworzony w sporej części przez gwiazdy o małej masie.
Jak to jest możliwe, skoro wg mojej wiedzy tylko supernowe są w stanie syntetyzować coś cięższego niż Nikiel ?
A ołów pochodzi w głównej mierze z rozpadu innych ciężkich elementów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Faktycznie, dzięki.

W programach popularnonaukowych wychwyt neutronu był pomijany i przez to uważałem że produkcja atomów kończy się na reakcjach termojądrowych.
Czyli cięższe jądra mogą być utworzone poprzez wychwyt neutronu w mniejszych gwiazdach (s) i w supernowych (r).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 2.08.2020 o 18:01, Astro napisał:

P.S. To całkiem siwe to pierwiastki otrzymane przez ludziów (w naturze niezbyt występują).

Może ja się nie znam na kolorach, a może to jakieś przekłamania, ale dla mnie siwe to są pierwiastki powstające w białych karłach.

Te w kolorze radonu zaś mają tylko krótkożyciowe izotopy, więc jeśli nawet powstają w wybuchach gwiazd, to na Ziemi się nie zachowały. Jednak występują w przyrodzie, bo powstają na bieżąco jako produkty rozpadu promieniotwórczego. Owszem, niektóre izotopy są wytwarzane przez człowieka, bo znacznie trudniej pozyskać ich większą ilość ze źródeł naturalnych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W próbkach pobranych z dna Pacyfiku występuje niespodziewanie dużo berylu-10, informują naukowcy z Niemiec i Australii. Ten rzadki izotop powstaje w atmosferze pod wpływem promieniowania kosmicznego i dostarcza cennych informacji na temat geologicznej historii Ziemi. Jego większa od spodziewanej akumulacja na dnie oceanu może mieć związek ze zmianami prądów lub zjawiskami astrofizycznymi, które miały miejsce około 10 milionów lat temu. Nadmiarowy beryl może być znacznikiem, dzięki któremu będziemy mogli bardziej precyzyjnie opisać historię geologiczną naszej planety.
      Izotopy promieniotwórcze, jak beryl-10, są wykorzystywane do datowania. Najbardziej znanym z nich jest węgiel-14. Jednak metoda radiowęglowa może być wykorzystywana do datowania próbek nie starszych niż około 50 tysięcy lat. Aby datować starsze próbki potrzebujmy innych izotopów, takich jakich beryl-10. Powstaje on w górnych partiach atmosfery, gdy promienie kosmiczne wchodzą w interakcje z tlenem i azotem. Później wraz z deszczem 10Be opada na powierzchnię planety i może akumulować się na dnie oceanów. Czas jego połowicznego rozpadu wynosi 1,4 miliona lat, co pozwala na datowanie próbek starszych niż 10 milionów lat.
      Niedawno naukowcy z Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Uniwersytetu Technicznego w Dreźnie i Austalijskiego Uniwersytetu Narodowego prowadzili szczegółowe analizy próbek z dna Pacyfiku. Wykorzystali akceleratorową spektrometrię mas do oceny zawartości berylu-10. A gdy sprawdzili uzyskane wyniki, czekała ich niespodzianka. W próbce sprzed około 10 milionów lat znaleźliśmy niemal dwukrotnie więcej 10Be niż się spodziewaliśmy. To nieznana dotychczas anomalia, mówi doktor Dominik Koll z HZDR. Uczeni, by upewnić się, że nie doszło do zanieczyszczenia, poddali podobne analizie inne próbki i uzyskali takie same wyniki.
      Anomalia taka wymaga wyjaśnienia. Doktor Koll ma dwie hipotezy. Jedna z nich związana jest z cyrkulacją oceaniczną wokół Antarktyki. Przypuszcza się, że 10–12 milionów lat temu doszło tam do znacznych zmian rozkładu prądów morskich. To mogło spowodować, że przez pewien czas dystrybucja 10Be była nierównomierna i spowodowało to szczególnie dużą koncentrację tego pierwiastka na Pacyfiku.
      Druga z hipotez mówi, że przed 10 milionami lat promieniowanie kosmiczne stało się bardziej intensywne, na przykład w wyniku wybuchu pobliskiej supernowej. Ewentualnie Układ Słoneczny mógł przejściowo utracić swoją warstwę ochronną – heliosferę – na przykład w wyniku kolizji z gęstą chmurą międzygwiezdną. Jedynie dodatkowe pomiary berylu pokażą, czy anomalia spowodowana jest zmianą rozkładu prądów oceanicznych czy wydarzeniem astrofizycznym, mówi Koll. Dlatego chcemy w przyszłości przeanalizować więcej próbek i mamy nadzieję, że inne zespoły naukowe zrobią to samo, dodaje.
      Jeśli do podobnej anomalii doszło na całej planecie, będzie to oznaczało, że jest ona skutkiem tego, co stało się w przestrzeni kosmicznej. Jeśli występuje tylko lokalnie, prawdopodobnie winna jest zmiana prądów oceanicznych.
      Zauważony właśnie nadmiar berylu może być niezwykle przydatny w datowaniu geologicznym. Gdy bowiem porównuje się różne zestawy danych głównym problemem konieczność istnienia uniwersalnych znaczników czasowych, które pozwolą zsynchronizować dane. Dla okresów liczonych w milionach lat takie kosmogeniczne znaczniki jeszcze nie istnieją. Ta anomalia może być pierwszym z nich, wyjaśnia Koll.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...