
Specjaliści prezentują pomysły, jak znaleźć czarną dziurę krążącą w Układzie Słonecznym
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Przed 10 laty 14 września 2015 roku interferometr LIGO zarejestrował pierwsze fale grawitacyjne wykryte przez człowieka (o ich odkryciu poinformowano 11 lutego 2016 roku). Ludzkość zyskała 3. sposób badania kosmosu, po falach elektromagnetycznych i promieniowaniu kosmicznym. Tym razem zaobserwowaliśmy zaginanie czasoprzestrzeni. Obecnie LIGO rutynowo wykrywa fale grawitacyjne. We współpracy z Virgo (Włochy) i KAGRA (Japonia) tworzy sieć LVK, która średnio co trzy dni rejestruje fale pochodzące z połączenia czarnych dziur. Teraz naukowcy z LVK zdobyli drugi w historii, i jednocześnie najdokładniejszy, dowód obserwacyjny, na prawdziwość teorii o powierzchni czarnych dziur Stephena Hawkinga.
W 1971 roku Stephen Hawking zaprezentował teorię, zgodnie z którą całkowita powierzchnia horyzontu zdarzeń czarnej dziury nigdy się nie zmniejsza. Pierwsze zarejestrowane przez człowieka fale grawitacyjne pochodziły z wydarzenia GW150914, które po analizie okazało się połączeniem czarnych dziur o masach 29 i 36 mas Słońca. W ich wyniku powstała nowa czarna dziura o masie 62 mas Słońca, a brakujące masa 3 Słońc została wyemitowana w postaci promieniowania grawitacyjnego. Gdy Stephen Hawking się o tym dowiedział, skontaktował się z naukowcami z LIGO i zapytał, czy wykryte zjawisko potwierdza jego teorię o powierzchni. Wówczas jednak naukowcy nie byli w stanie odpowiedzieć na to pytanie. Dopiero w 2019 roku, już po śmierci Hawkinga, stworzono odpowiednie techniki analizy danych. Dwa lata później, w 2021 roku ostatecznie stwierdzono, że obserwacje wykazały, iż powierzchnia wynikowej czarnej dziury się nie zmniejszyła. Dokładność obserwacji wynosiła 95%, czyli około 2 sigma. To zbyt mało, by mówić o odkryciu.
Obecnie nadeszło silniejsze potwierdzenie prawdziwości teorii Hawkinga. Znaleziono je w danych z interferometru LIGO – Virgo i KAGRA były akurat wyłączone – który 14 stycznia bieżącego roku zaobserwował sygnał GW250114. Dostarczył on najsilniejszych dowodów na prawdziwość twierdzenia Hawkinga. ANaliza wykazała, że całkowita powierzchnia obu czarnych dziur, które się połączyły, wynosiła 240 000 km2, a powierzchnia nowo powstałej czarnej dziury to około 400 000 km2. Tym razem dokładność obserwacji wynosi 99,999%. Szczegóły badań opublikowano na łamach Physical Review Letters.
Ten wyjątkowy pomiar był możliwy dzięki 10 latom udoskonaleń interferometru. Prace były prowadzone w obu wykrywaczach, w stanach Waszyngton i Louisiana. Nie wiem, co będzie za 10 lat, ale poprzednie 10 lat to czas olbrzymiego wzrostu czułości LIGO. Dzięki temu nie tylko wykrywamy coraz więcej nowych czarnych dziur, ale zdobywamy coraz bardziej szczegółowe dane na ich temat, mówi profesor Katerina Chatziioannou.
Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 1021, zatem cała ziemia jest ściskana lub rozciągana o około szerokość atomu. LIGO składa się z dwóch bliźniaczych urządzeń umieszczonych w odległości około 3000 kilometrów od siebie. Każde z urządzeń ma kształt litery L o ramionach długości 4 kilometrów. Na końcach ramion znajdują się 40-kilogramowe lustra umieszczone dokładnie w tej samej odległości od lasera. W ich stronę wystrzeliwana jest wiązka lasera, która odbija się od luster i wraca do detektorów. Jeśli w trakcie ostrzeliwania luster laserem przez Ziemię przejdzie fala grawitacyjna, zmieni się odległość pomiędzy jednym z luster a laserem. Zatem światło w obu ramionach przebędzie różną drogę. Między promieniami światła dojdzie do interferencji, a badając ją naukowcy mogą mierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczy, by wykryć zmiany długości ramion interferometru spowodowane przejściem fali grawitacyjnej.
Wykorzystanie dwóch identycznych urządzeń położonych w dużej odległości od siebie ma na celu eliminację części zakłóceń powodowanych źródłami na Ziemi (może zostać zakłócone jedno urządzenie, ale drugie położone tak daleko nie odczuje zakłócenia lub będzie to odczuwalne w inny sposób). Duża odległość pozwala też na dodatkowe upewnienie się, że przeszła fala grawitacyjna. Fale te rozchodzą się bowiem z prędkością światła, dokładnie więc wiemy, jakie może być opóźnienie zarejestrowanego sygnału pomiędzy jednym a drugim urządzeniem. Dzięki odległości dzielącej urządzenia możemy też dokonywać lepszej triangulacji, czyli lepiej określać źródło sygnału, a włączenie do tej sieci Virgo i KAGRA dodatkowo zwiększa precyzję pomiarów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Rogówka to przezroczysta struktura w kształcie kopuły, która znajduje się z przodu oka. Jej celem jest skupianie światła na siatkówce. Jeśli kształt rogówki jest nieprawidłowy, prowadzi do zaburzeń widzenia. Tego typu problemy ma olbrzymia liczba osób i wiele z nich przechodzi zabieg LASIK, laserową korektę wzroku. Jak mówi profesor chemii Michael Hill z Occidental College, LASIK to tylko wyszukana forma tradycyjnej operacji. To wciąż wycinanie tkanki, tylko że przy użyciu lasera. Dlatego Hill we współpracy z profesorem chirurgii Brianem Wongiem z University of California w Irvine rozpoczęli prace nad korygowaniem kształtu rogówki bez potrzeby jej nacinania. O ich wynikach poinformowali podczas spotkania American Chemical Society.
Naukowcy nazwali swój proces kształtowaniem elektromechanicznym (EMR). Przyznają, że odkryli go przypadkiem. Przyglądałem się tkankom jako materiałowi podatnemu na formowanie i odkryłem cały zestaw chemicznych modyfikacji, mówi Wong. Wiele zawierających tkanek naszego organizmu, w tym rogówka, jest utrzymywanych przez przyciąganie się przeciwnie naładowanych elementów. Takie tkanki zawierają dużo wody. Jeśli przepuści się przez nie ładunki elektryczne, dochodzi do obniżenia pH, a więc zwiększenia kwasowości. To osłabia oddziaływania wewnątrz tkanki i sprawia, że staje się ona podatna na formowanie. Gdy następnie przywrócimy pierwotne pH, tkanka zostaje w takim kształcie, w jaki ją uformowaliśmy.
Hill i Wong prowadzili eksperymenty z różnymi tkankami, ale ich celem zawsze była rogówka. Skonstruowali więc platynowe „soczewki kontaktowe”, które stanowiły wzorzec dla pożądanego kształtu rogówki. Następnie nałożyli te „soczewki” na gałki oczne królika zanurzone w roztworze soli, który miał naśladować łzy. Platyna pełniła funkcję elektrody, umożliwiającej uzyskanie zmiany pH po przyłożeniu niewielkiego potencjału elektrycznego.
Po około minucie rogówka przybrała pożądany kształt. Zmianę kształtu uzyskano więc równie szybko, co za pomocą LASIK, ale bez potrzeby nacinania rogówki i za pomocą znacznie tańszych urządzeń. Co więcej, naukowcy wykazali, że ich metoda można też odwrócić część chemicznych skutków zmętnienia rogówki.
Wstępne eksperymenty wskazują, że EMR może być niezwykle obiecującą metodą leczenia wzroku. Jednak sami autorzy przyznają, że przed nimi jeszcze bardzo długa droga, zanim metoda taka będzie mogła zostać zastosowana na ludziach. Konieczne są liczne badania i eksperymenty, w tym na żywych zwierzętach, a na to najpierw muszą znaleźć się fundusze.
Jeśli jednak EMR zda egzamin, możemy zyskać tanią i łatwo dostępną metodę leczenia. Niewykluczone nawet, że EMR byłaby całkowicie odwracalna. W razie niepowodzenia zabiegu można by go powtarzać do osiągnięcia pożądanych rezultatów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Japoński teleskop Subaru pracujący w ramach projektu FOSSIL (Formation of the Outer Solar System: An Icy Legacy) odkrył czwarty znany nam sednoid – obiekt oznaczony tymczasowo jako 2023 KQ14. Subaru zarejestrował go w marcu, maju i sierpniu 2023 roku, a obserwacje przeprowadzone w roku 2024 oraz przeszukiwanie archiwów pozwoliły na przeanalizowanie orbity obiektu w ciągu ostatnich 19 lat. Dzięki temu dowiedzieliśmy się, że to sendoid, że nawet jak na sednoidy jest wyjątkowy i że może mieć znaczenie dla poszukiwań Planety X, hipotetycznej dziewiątej planety Układu Słonecznego.
Sednoidy to obiekty transneptunowe o olbrzymiej półosi wielkiej, bardzo odległym peryhelium i niezwykle eliptycznej orbicie. Ich nazwa pochodzi od Sedny, najbardziej znanego z tego typu obiektów. Wszystkie sednoidy mają peryhelium większe niż 60 jednostek astronomicznych. Peryhelium nowego sednoidu leży w odległości 66 j.a.
Analizy numeryczne wykazały, że 2023 KQ14 zachowuje stabilną orbitę od co najmniej 4,5 miliarda lat. Orbita ta znacząco różni się od orbity pozostałych trzech sednoidów. Ich orbity są podobne i są stabilne od około 4,2 miliardów lat.
Fakt, że 2023 KQ14 ma odmienną orbitę od innych pokazuje, że zewnętrzne części Układu Słonecznego są bardziej zróżnicowane i złożone, niż sądziliśmy. Ponadto orbita tego obiektu wskazuje, że Planeta X (Dziewiąta) – jeśli istnieje – ma znacznie dłuższą orbitę, niż się przewiduje. Fakt, że orbita 2023 KQ14 nie jest zgodna z orbitami pozostałych sednoidów, zmniejsza prawdopodobieństwo istnienia Planety X. Możliwe, że taka planeta istniała kiedyś w Układzie Słonecznym, ale została z niego wyrzucona, nadając innym obiektom nietypowe orbity, które dzisiaj obserwujemy, mówi doktor Yuku Huang z Narodowego Obserwatorium Astronomicznego Japonii.
A doktor Fumi Yoshida dodaje: 2023 KQ14 znajduje się odległych regionach, gdzie wpływ grawitacyjny Neptuna jest niewielki. Obecność tam obiektu o wydłużonej orbicie i odległym peryhelium wskazuje, że w przeszłości, gdy 2023 KQ14 powstawał stało się tam coś wyjątkowego. Zrozumienie ewolucji orbity i właściwości fizycznych tego obiektu są kluczowe dla całościowego opisania historii Układu Słonecznego.
Źródło: Discovery and dynamics of a Sedna-like object with a perihelion of 66 au, https://www.nature.com/articles/s41550-025-02595-7
« powrót do artykułu -
przez KopalniaWiedzy.pl
Właśnie uruchomione Obserwatorium im. Very C. Rubin – o jego publicznym debiucie informowaliśmy tutaj – pokazało swoją moc. W ciągu zaledwie 10 godzin obserwacji, przeprowadzonych w ciągu 7 nocy, obserwatorium astronomiczne okryło 2104 nowe asteroidy, w tym 7 asteroid bliskich Ziemi, 11 asteroid trojańskich i 9 obiektów transneptunowych.
Na prezentowanym poniżej wideo możecie zobaczyć 7 nieznanych wcześniej asteroid bliskich Ziemi. To te szybko poruszające się żółto-pomarańczowe. Kolejnych 2015 obiektów to obiekty z głównego pasa asteroid, który znajduje się między Marsem a Jowiszem.
Wspomnianych 11 asteroid trojańskich (tzw. Trojańczyków) to asteroidy, które dzielą z Jowiszem orbitę wokółsłoneczną. W dwóch punktach libracyjnych Jowisza znajdują się dwie grupy asteroid. Jedna to „Grecy”, druga „Trojańczycy”. Trojańczycy gonią Greków, a w każdej z grup znajduje się szpieg strony przeciwnej. Więcej o nich znajdziecie w naszym tekście na temat misji Lucy. Mamy też w końcu 9 obiektów transneptunowych, czyli takich, które znajdują się poza orbitą Neptuna.
Powtórzmy jeszcze raz: 1 wyjątkowe obserwatorium astronomiczne, 10 godzin obserwacji i 2104 nieznane dotychczas asteroidy. Wszystkie naziemne i kosmiczne obserwatoria wykrywają około 20 000 nowych asteroid w ciągu roku. To pokazuje, jak olbrzymie możliwości ma Vera C. Rubin Observatory. A musimy pamiętać, że wciąż nie pracuje ono pełną mocą.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.