Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tajemniczy wahadłowiec X-37B poleci w kolejną tajną misję. Tym razem znamy nieco szczegółów

Rekomendowane odpowiedzi

US Air Force zapowiedziały kolejną misję tajemniczego mini wahadłowca X-37B. Pojazd wystartuje 16 maja. Będzie to już jego szósty pobyt w przestrzeni kosmicznej. O wcześniejszych misjach nie wiemy praktycznie niczego, poza tym, że przeprowadzano podczas nich tajne testy. Tym razem Amerykanie uchylili jednak rąbka tajemnicy.

Wiemy, że USA posiadają dwa mini-wahadłowce tego typu. Długość każdego z nich to 8,8 metra, a rozpiętość skrzydeł wynosi 4,6 metra. Duże wahadłowce miały długość 37 metrów, przy rozpiętości skrzydeł 24 metrów. Pierwszy start X-37B odbył się w kwietniu 2010 roku, a pojazd wrócił na Ziemię po 224 dniach. Kolejne misje były coraz dłuższe. Ostatnia, najdłuższa, odbyła się pomiędzy 7 września 2017 a 27 października 2019 roku. Trwała więc 779 dni. W czasie pierwszych czterech pojazd był wynoszony przez rakietę Atlas V, podczas ostatniej wykorzystano Falcona 9.

Najbliższa misja, OTV-6, wystartuje na pokładzie Atlasa V. W ramach tej ważnej misji przeprowadzili więcej badań niż podczas którejkolwiek z wcześniejszych. Znajdą się wśród nich dwa eksperymenty NASA, poinformowała sekretarz US Air Force, Barbara Barrett. Wyjaśniła, że jeden z eksperymentów dla NASA będzie badał wpływ promieniowania kosmicznego na nasiona, a podczas drugiego zostanie sprawdzone zachowanie się różnych materiałów w przestrzeni kosmicznej.

Znacznie bardziej interesująco wygląda inny eksperyment, który zostanie przeprowadzony na zlecenie U.S. Naval Research Laboratory. W jego ramach badana będzie technologia zamiany energii słonecznej na energię mikrofalową i jej transfer na Ziemię.

Nie zdradzono przy tym żadnych szczegółów, jednak z wcześniejszych informacji napływających z Naval Research Laboratory wiemy, że z technologią taką wiązane są duże nadzieje,  Dzięki niej Amerykanie mogliby stworzyć drony pozostające w powietrzu przez bardzo długi czas, może nawet bezterminowo, gdyż otrzymywałyby energię z satelitów. Ponadto satelity byłyby zdolne do przekazywania energii w dowolne miejsce na Ziemi, ewentualnie do pojazdów kosmicznych czy innych satelitów.

Dzięki takiej technologii jednostki wojskowe czy zespoły naukowe działające w odległych miejscach globu nie musiałyby polegać na mało wydajnej technologii fotowoltaicznej czy na ciężkich, hałaśliwych zużywających sporo paliwa generatorach. Wystarczyłoby urządzenie z anteną odbierającą mikrofale. Ta sama technologia przydałaby się w regionach katastrof, gdzie zapewniłaby energię na długo zanim możliwe byłoby odbudowanie infrastruktury.

Przypomnijmy, że po powrocie (maj 2017) X-37B z misji OTV-4 przyznano, że w czasie misji testowano zaawansowane systemy nawigacyjne, kontrolne, napędowe, ochrony termicznej oraz systemy lotu autonomicznego, lądowania i wejścia w atmosferę. Zauważono też wówczas, że X-37B latał niezwykle nisko. Pojawiły się sugestie, że USA testują technologie pozwalające satelitom szpiegowskim na latanie nisko nad Ziemią. To pozwoliłoby na wykonywanie bardziej dokładnych zdjęć, ale wymagałoby znacznie więcej paliwa.

Wiemy też, że w ramach OTV-6 z pokładu mini wahadłowca zostanie wypuszczony niewielki satelita FalconSat-8, który przeprowadzi pięć eksperymentów na potrzeby U.S. Air Force Academy.

Nie wiemy za to, jak długo potrwa misja OTV-6.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"na zlecenie U.S. Naval Research Laboratory. W jego ramach badana będzie technologia zamiany energii słonecznej na energię mikrofalową i jej transfer na Ziemię. [...]"

Starożytni mawiali: Jeśli chcesz coś ukryć, to ukryj to w oku słońca.

Mówiąc po ludzku: wcale tego nie chowaj, ale powiedz wszystkim, że służy do czegoś innego :-)

Do czego zaś mogą służyć mikrofale, kierowane z orbity na ziemię, o takiej gęstości, że można nimi zasilić maszynę?

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
19 minut temu, Jarosław Bakalarz napisał:

Do czego zaś mogą służyć mikrofale, kierowane z orbity na ziemię, o takiej gęstości, że można nimi zasilić maszynę?

Do grilowania kiełbasek na piknikach?

  • Haha 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeżeli kiedyś będzie głośno o wybuchających głowach, będzie wtedy wiadomo z czym to łączyć.

 

Czy mikrofalówka jest w stanie uszkodzić elektronikę? - pytanie retoryczne.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dobrze obaj Panowie myślicie.

Jednak trzeba być bardziej psychopatycznym, by być naukowcami (lub generałami) w US Navy ;)  Gotowanie może sie przydać: w karcie zgonu będzie niewydolność serca, zapaść oddechowa lub obrzęk mózgu...
Należy połączyć: założenia projektu Blue Bell i starych już eksperymentów z wpływem mikrofal na postrzeganie z koncepcją broni LRAD (a jeszcze lepiej z ADS).
Obie one w wersji naziemnej już działają od conajmniej dekady -  testy terenowe i  opinie "króliczków" są oficjalnie publikowane przez Navy. (W ogóle Navy specjalizuje się w testowaniu broni mikrofalowej)
Co byście powiedzieli, gdyby ktoś całemu miastu wydał polecenie "na barykady, ludzie brońcie sie przed xxxxx"?
Orwell to za mało; trzeba przeczytać "Przenicowany Świat".

https://www.youtube.com/watch?v=zvP_v4UOXt4

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
On 5/11/2020 at 11:53 AM, Jarosław Bakalarz said:

Orwell to za mało; trzeba przeczytać "Przenicowany Świat".

Przeczytałem i jestem zawiedziony. Gdyby była to pierwsza antyutopia, jaką czytałem, pewnie bym był pod wrażeniem, ale w porównaniu z innymi wypada dosyć blado. To raczej wymówka do rozmyślań nad stanem ludzkości i pofilozofowania sobie autorów niż przemyślana i dobrze skonstruowana opowieść.

 

On 5/11/2020 at 11:53 AM, Jarosław Bakalarz said:

Jednak trzeba być bardziej psychopatycznym, by być naukowcami (lub generałami) w US Navy ;)  Gotowanie może sie przydać: w karcie zgonu będzie niewydolność serca, zapaść oddechowa lub obrzęk mózgu...

Chciałbym się nie zgodzić i zarzucić ci bezpodstawne szerzenie antyamerykańskiej propagandy, ale kiedy się policzy ciała...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
On 5/20/2020 at 10:23 PM, Daniel O'Really said:

ale w porównaniu z innymi wypada dosyć blado

Od tej strony rozumując zgadzam się. Chodziło o wątek sterowania ludźmi przy pomocy takich wlaśnie ADS/LIDAR. 

...Ciała są po każdej stronie barykady. To nie jest antyamerykańskość.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
7 hours ago, Jarosław Bakalarz said:

Ciała są po każdej stronie barykady

Jeśli tak uważasz, podaj przykład innego państwa z grona tzw wolnych demokracji, który po II wojnie światowej wygubił w różny sposób (eksperymenty, wprost podczas napaści wojskowej, pośrednio przez finansowanie przewrotów wojskowych) choć trochę zbliżoną liczbę ludzi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 minutes ago, Daniel O'Really said:

choć trochę zbliżoną liczbę ludzi

Stawiasz wymaganie, by były to liczby zbliżone i to w dodatku w wolnych demokracjach, i koniecznie po IIww.   Czyli ford musi być jednak biały :-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
21 minutes ago, Jarosław Bakalarz said:

Stawiasz wymaganie, by były to liczby zbliżone i to w dodatku w wolnych demokracjach, i koniecznie po IIww.   Czyli ford musi być jednak biały :-)

Tak, ponieważ moim zdaniem właśnie z II wojny światowej i jej okrucieństw ludzie wyciągnęli najdalej idące wnioski. Większość demokracji prawidłowe. USA stwierdziły chyba, że jednak Hitler miał rację i wdrożyły wszystkie zdobyczne III Rzeszy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
45 minutes ago, Daniel O'Really said:

USA stwierdziły chyba, że jednak Hitler miał rację i wdrożyły wszystkie zdobyczne III Rzeszy.

To oczywista prawda, ale jest jeszcze kilka demokracji trzeciego sortu (nie takie przykładne jak USA), które mają sporo za uszami. 

Te prawidłowe demokracje niestety nie z własnej woli nie wykorzystały ścieżki amerykańskiej - po prostu zostali uprzedzeni i sprawnie wzięci pod buta.  Ale też co nieco popsuły (choćby atole).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Czy można naprawić urządzenie, które znajduje się w odległości ponad 600 milionów kilometrów i uległo mechanicznemu uszkodzeniu? Jak się okazuje, można. Dokonali tego naukowcy odpowiedzialni za misję Juno krążącą na orbicie Jowisza. Naukowcy z Southwest Research Institute właśnie podzielili się szczegółami niezwykłego przedsięwzięcia, jakiego podjęli się w grudniu 2023 roku.
      JunoCam to kamera działająca w kolorze i w zakresie światła widzialnego, której głównym celem jest robienie zdjęć przeznaczonych dla opinii publicznej. W ten sposób NASA chce zwiększyć zainteresowanie przeciętnego zjadacza chleba misjami w kosmosie. Dostarczone przez nią obrazy przyczyniły się też do dokonania ważnych odkryć. Jednostka optyczna JunoCam znajduje się poza wzmocnioną tytanem osłoną przed promieniowaniem, która chroni instrumenty naukowe Juno przed szkodliwym promieniowaniem kosmicznym.
      Twórcy misji byli przekonani, że JunoCam przetrwa osiem orbit wokół Jowisza, nie wiedzieli jednak, jak będzie sprawowała się dalej. Okazało się, ze przez pierwsze 34 orbity kamera pracowała niemal idealnie. Podczas 47. orbity na zdjęciach zaczęły pojawiać się błędy. Inżynierowie wiedzieli, że prawdopodobną przyczyną uszkodzenia jest promieniowanie, jednak który element uległ uszkodzeniu? Zaczęto szukać odpowiedzi i okazało się, że doszło do uszkodzenia regulatora napięcia. Opcji naprawy zepsutego urządzenia, znajdującego się ponad 600 milionów kilometrów od Ziemi nie było zbyt wiele. Eksperci zdecydowali się na wyżarzanie. To technika obróbki metali, podczas której materiał jest podgrzewany, utrzymywany w wysokiej temperaturze, a następnie powoli studzony. Mimo, że proces ten nie jest do końca przez naukę rozumiany, może on prowadzić do zmniejszenia liczby defektów w materiale.
      Wiedzieliśmy, że wyżarzanie może czasem zmienić strukturę takiego materiału jak krzem na poziomie mikroskopowym. Nie wiedzieliśmy, czy to coś pomoże. Nakazaliśmy więc jednemu z podgrzewaczy JunoCam podniesienie temperatury do 25 stopni Celsjusza – to dużo cieplej niż typowa temperatura pracy kamery – i czekaliśmy wstrzymując oddech, mówi Jacob Schaffner z Malin Space Science Systems, który zaprojektował kamerę.
      Wkrótce po wyżarzaniu kamera zaczęła dostarczać obrazów dobrej jakości, jednak pojazd coraz bardziej zbliżał się do planety, był narażony na coraz silniejsze promieniowanie. I do 55. orbity błędy były już na wszystkich zdjęciach. Eksperci próbowali różnych metod obróbki obrazu, ale nic nie pomagało. Zostało kilka tygodni do przelotu w pobliżu księżyca Jowisza, Io. Postanowiliśmy postawić wszystko na jedną kartę, maksymalnie rozgrzać podgrzewacz JunoCam i przekonać się, czy więcej wyżarzania coś da, stwierdził Michael Ravine.
      Obrazy przesłane w pierwszym tygodniu wyżarzania były nieco lepsze. Później zaś doszło do dramatycznej poprawy jakości obrazu. Do dnia 30 grudnia 2023 roku, kiedy Juno przeleciała zaledwie 1500 kilometrów od powierzchni Io, JunoCam pracowała niemal tak dobrze, jak w dniu wystrzelenia misji.
      Do dzisiaj satelita Juno okrążył Jowisza 74 razy. Podczas ostatniej, 74. orbity, znowu pojawiły się błędy na zdjęciach. Inżynierowie mają nadzieję, że kolejne wyżarzanie ponownie poprawi jakość fotografii.
      Od czasu pierwszych eksperymentów z naprawą JunoCam zespół odpowiedzialny za misję zastosował różne wersje wyżarzania w różnych instrumentach naukowych i podsystemach inżynieryjnych. Uzyskano świetne wyniki. Juno uczy nas, jak zbudować i utrzymywać pojazd kosmiczny zdolny do tolerowania promieniowania. To ważna lekcja nie tylko dla misji Juno, ale też dla satelitów krążących wokół Ziemi. Sądzę, że zdobyte doświadczenia zostaną zastosowane w przypadku satelitów wojskowych i komercyjnych oraz w innych misjach NASA, główny naukowiec misji Juno z Southwest Research Institute, Scott Bolton.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Firma TAE Technologies, która od niemal 30 lat prowadzi badania nad fuzją jądrową, ogłosiła, że dokonała znaczącego postępu pod względem wydajności i sprawności reaktora fuzyjnego. Wyniki naszych eksperymentów, opublikowane na łamach recenzowanego pisma Nature Communications, dowodzą, że TAE opracowało taką metodę formowania i optymalizacji plazmy, która zwiększa wydajność, znacząco obniża złożoność i koszty oraz przyspiesza moment, w którym zademonstrujemy pozyskiwanie energii netto i komercyjną fuzję jądrową, czytamy w firmowym oświadczeniu.
      Firma twierdzi, że jej ostatnie pracy udowodniły, iż z reaktora, który rozwija, można będzie pozyskać 100-krotnie więcej energii niż z typowego tokamaka korzystającego z pola magnetycznego o tej samej sile, zdolnego do uwięzienia tej samej ilości plazmy. Dodatkowo jej system jest znacznie prostszy, dzięki czemu jest znacznie tańszy w budowie i utrzymaniu.
      TAE Technologies powstała w 1998 roku. Przez wiele lat firma unikała rozgłosu, nie zdradzając o sobie zbyt wielu informacji. Witrynę internetową uruchomiła dopiero w 2015 roku. Wiadomo, że w 2021 roku zatrudniała ponad 250 pracowników i zebrała finansowanie w wysokości 880 milionów USD. Jej głównymi sponsorami są Goldman Sachs, Vulcan Inc. (firma założyciela Microsoftu Paula Allena) czy fundusze venture capital jak Venrock i New Enterprise Associates.
      TAE Technologies rozwija technologię fuzji aneutronowej za pomocą techniki FRC (Field-Reversed Configuration). Fuzja aneutronowa to rodzaj syntezy termojądrowej, w której bardzo mało energii jest unoszonej przez neutrony. Jest ona znacznie bezpieczniejsza od tradycyjnej fuzji jądrowej, nie wymaga tak dobrego ekranowania, a pozyskana z niej energia jest łatwiejsza do przetworzenia na użyteczny dla nas prąd. Nie ma też ryzyka, że poszczególne elementy reaktora staną się radioaktywne, więc trzeba będzie je w specjalny sposób zabezpieczać, gdy przestaną być używane. Jednak uzyskanie fuzji aneutronowej jest znacznie trudniejsze, wymaga bardziej ekstremalnych warunków, niż w przypadku tradycyjnej fuzji z wykorzystaniem deuteru i trytu.
      TAE Technologies ma zamiar wykorzystać w swoim reaktorze paliwo wodorowo-borowe (p-B11). To, zdaniem firmy, najczystsze, najbezpieczniejsze i najbardziej przyjazne środowisku paliwo, jakie można wykorzystać w czasie fuzji.
      W technice FRC plazma samodzielnie się organizuje i generuje własne pole magnetyczne wewnątrz reaktora, co znacząco zmniejsza zapotrzebowanie na zewnętrzne magnesy i ułatwia działanie reaktora. Sam reaktor jest też prostszy, więc tańszy i łatwiejszy w budowie czy utrzymaniu. Przełom, ogłoszony przez TAE Technologies, polega na rozwiązaniu wcześniejszych problemów z wygenerowaniem i utrzymaniem plazmy, co osiągnięto dzięki wstrzyknięciu wiązki neutralnej wiązki cząstek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Głęboko pod powierzchnią Morza Śródziemnego znajduje się niezwykła infrastruktura, wykrywacz neutrin KM3NeT. Jedna część znajduje się 30 km od południowych wybrzeży Francji, na głębokości ok. 2500 m i jest zoptymalizowana do pracy z neutrinami o energiach liczonych w gigaelektronowoltach (GeV). Część druga, KM3NeT-It, położona 100 km na wschód od południowych wybrzeży Sycylii, zlokalizowana 3500 m pod powierzchnią, wykrywa neutrina z zakresu tera- i petaelektronowoltów (TeV, PeV). Zarejestrowano tam najbardziej energetyczne neutrino. Jego energia sięgała 220 PeV.
      Międzynarodowy zespół naukowy KM3NeT Collaboration poinformował na łamach Nature, o wynikach analiz przeprowadzonych na danych zebranych przez wykrywacze umieszczone na 21 linach wpuszczonych w głąb morza. Infrastruktura w pobliżu Sycylii pracowała w takich konfiguracji pomiędzy końcem września 2022 a połową września 2023, kiedy to dodano 7 kolejnych lin z detektorami. Uczeni przeanalizowali dane z 287 dni pracy KM3NeT. W tym czasie zarejestrowano 110 milionów interakcji. A najpotężniejsze ze znanych neutrin wykrywacze zarejestrowały 13 lutego 2023 roku. Wspomniane już energia 220 PeV to 16 000 razy więcej niż energia najpotężniejszych kolizji, do jakich dochodzi w Wielkim Zderzaczu Hadronów (LHC).
      Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje ich nawet 100 bilionów. Nie mają one jednak ładunku elektrycznego i prawie nie posiadają masy. Niezwykle rzadko wchodzą w interakcje z materią. Dlatego do ich wykrywania używa się gigantycznych teleskopów, takich jak KM3NeT. To zespół czujników zawieszonych na linach w głębinach Morza Śródziemnego, które rejestrują promieniowanie Czerenkowa. Gdy neutrino wchodzi w interakcję z jądrem atomu w wodzie morskiej, może powstać mion. W wyniku interakcji jądro atomu-neutrino powstały mion zyskuje tak olbrzymią energię kinetyczną, że gdy przemieszcza się przez wodę, dochodzi do emisji światła. To właśnie jest promieniowanie Czerenkowa, które możemy porównać do gromu dźwiękowego powstającego, gdy samolot przekracza prędkość dźwięku.
      Każda z 230 lin składających się na KM3NeT wyposażona jest w 18 modułów optycznych, z których każdy zawiera 31 fotopowielaczy, wykrywających i wzmacniających słabe rozbłyski światła ze wszystkich kierunków. W tym światło generowane przez miony powstające po uderzeniu neutrin w jądra atomowe. Jak więc łatwo się domyślić, dokładając kolejne liny z kolejnymi fotopowielaczami możemy łatwo rozbudowywać KM3NeT, którego objętość będzie wkrótce liczyła wiele kilometrów sześciennych.
      KM3NeT wykrywa obecnie neutrina pochodzące z ekstremalnych źródeł i wydarzeń astrofizycznych. Pierwsze zarejestrowanie neutrina o energii w zakresie setek PeV otwiera nowy rozdział w astronomii, stwierdził Paschal Coyle. Łącząc obserwacje z różnych źródeł, poszukujemy związku pomiędzy promieniowaniem kosmicznym, pojawianiem się neutrin oraz supermasywnymi czarnymi dziurami, wyjaśnia Yuri Kovalev z Instytutu Radioastronomii im. Maxa Plancka.
      Źródłem wysokoenergetycznych neutrin mogą być zresztą nie tylko supermasywne czarne dziury, ale też supernowe. Najpotężniejsze z zarejestrowanych neutrin może pochodzić z któregoś z tych źródeł. Może być też pierwszym zauważonym neutrino kosmogenicznym. Mogą one powstawać, gdy wysokoenergetyczne promieniowanie kosmiczne wchodzi w interakcję z reliktowymi niskoenergetycznymi fotonami z mikrofalowego promieniowania tła. Jednak, jako że to jedyne neutrino o energii rzędu setek PeV, naukowcy nie są w stanie określić jego źródła.
      KM3Net składa się z dwóch wykrywaczy: ARCA w pobliżu Sycylii i ORCA w pobliżu Tulonu. W skład zespołu ARCA wchodzi 230 lin o długości 700 metrów każda, rozmieszczonych w odległości 100 metrów od siebie. ORCA to 115 lin długości 200 metrów w odległości 20 metrów od siebie. Na każdej linie znajduje się 18 modułów optycznych, wyposażonych w 31 fotopowielaczy. Dane z wykrywaczy trafiają do INFN Laboratori Nazionali del Sud w Portopalo di Capo Passero i Laboratoire Sous-marin Provence Méditerranée w La Seyne-sur-Mer.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Z załogową misją na Marsa wiążą się nie tylko duże koszty i problemy techniczne. Jedne i drugie można w końcu przezwyciężyć. Znacznie trudniejsze do pokonania będą ograniczenia ludzkiego organizmu. Wyewoluowaliśmy na Ziemi i jesteśmy przyzwyczajeni do ziemskiej grawitacji oraz zapewnianej przez atmosferę ochrony przed promieniowaniem kosmicznym. Niejednokrotnie informowaliśmy o problemach zdrowotnych astronautów. Pobyt w kosmosie może uszkadzać mózg, nerki, prowadzić do anemii. Od lat pojawiają się też doniesienia o negatywnym wpływie na wzrok.
      Oftalmolog Santiago Costantino z Uniwersytetu w Montrealu poinformował, że co najmniej 70% osób, które przebywały na Międzynarodowej Stacji Kosmicznej cierpi na związany z lotem w kosmos zespół neurookulistyczny (SANS, spaceflight-associated neuro-ocular syndrome). Uczony wraz z zespołem chcieli przyjrzeć się zmianom biomechanicznym, które prowadzą do pojawienia się SANS. W tym celu przeanalizowali dane dotyczące 13 astronautów, którzy przebywali na Międzynarodowej Stacji Kosmicznej od 157 do 186 dni. Średnia wieku astronautów wynosiła 48 lat. Pochodzili oni z różnych krajów, ośmioro z nich w chwili badań miało za sobą jedną misję, były wśród nich 4 kobiety.
      Naukowcy porównali trzy parametry, które mierzyli przed i po misji: sztywność gałki ocznej, ciśnienie wewnątrzgałkowe oraz amplitudę pulsu oka. Pierwszy z parametrów badano za pomocą koherencyjnej tomografii optycznej, dwa pozostałe – metodą tonometrii.
      Naukowcy zauważyli, że w czasie misji doszło do znaczących zmian właściwości biomechanicznych gałek ocznych. Ich sztywność zmniejszyła się o 33%, ciśnienie węwnątrzgałkowe spadło o 11%, a amplituda pulsu był niższa o 25%. Tym zmianom fizycznym towarzyszyły objawy takie jak zmniejszenie rozmiarów gałki ocznej, zmiana obszaru, w którym oko widzi ostry obraz oraz – w części przypadków – obrzęk nerwu wzrokowego oraz fałdowanie siatkówki. Okazało się też, że u pięciu astronautów naczyniówka ma grubość większą niż 400 mikrometrów i nie było to skorelowane z wiekiem, płcią ani wcześniejszym pobytem w przestrzeni kosmicznej. "Brak powszechnego ciążenia zmienia dystrybucję krwi w organizmie, zwiększając przepływ krwi w głowie i spowalniając krążenie żylne w oczach. Prawdopodobnie dlatego dochodzi do zwiększenia grubości naczyniówki, gęstej sieci naczyń krwionośnych, odpowiedzialnej za odżywianie siatkówki.
      Zdaniem naukowców powiększenie się naczyniówki w wyniku braku grawitacji może rozciągać włókna kolagenowe w twardówce, prowadząc do długotrwałych zmian właściwości mechanicznych gałki ocznej. Badacze sądzą też, że pulsowanie krwi w warunkach mikrograwitacji może prowadzić do pojawienia się zjawiska uderzeń hydraulicznych, w wyniku których nagłe zmiany ciśnienia przepływu krwi wywołują w oku wstrząsy mechaniczne prowadzące do znacznego przemodelowania tkanek oka.
      Autorzy badań uważają, że zmiany te nie powinny stanowić problemu w przypadku misji trwających 6 do 12 miesięcy. Po powrocie na Ziemię oczy astronautów powróciły do normy, a problemy ze wzrokiem można było korygować za pomocą okularów. Problemem mogą być jednak dłuższe misje, takie jak załogowa wyprawa na Marsa, która może trwać nawet ponad 30 miesięcy. Obecnie nie znamy ani skutków tak długotrwałego pobytu w warunkach mikrograwitacji, ani nie potrafimy im zapobiegać.
      Zaobserwowane przez nas zmiany właściwości mechanicznych oka mogą być biomarkerami SANS. Pomoże to zidentyfikować tych astronautów, którzy są szczególnie narażeni na ryzyko, zanim jeszcze pojawią się u nich problemy spowodowane długotrwałym pobytem w przestrzeni kosmicznej, mówi Costantino.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed tygodniem misja BepiColombo przeleciała w odległości zaledwie 295 kilometrów nad powierzchnią Merkurego. O godzinie 7:07 pojazd znalazł się bezpośrednio nad północnym biegunem planety, który właśnie był oświetlony przez Słońce. Była to szósta i ostatnia asysta grawitacyjna, dzięki której pod koniec przyszłego roku pojazd trafi na orbitę Merkurego. Europejska Agencja Kosmiczna (ESA), która wraz z Japońską Agencją Kosmiczną (JAXA) zorganizowała misję, pokazała zdjęcia wykonane podczas przelotu. Trzeba przyznać, że fotografie nie zawiodły oczekiwań.
      Wspomniany przelot był ostatnią okazją do wykonania zdjęć przez M-CAMs (monitoring cameras). Moduł Mercury Transfer Module, do którego zamontowane są trzy 1-megapikselowe aparaty, oddzieli się od dwóch orbiterów – Mercury Planetary Orbiter (MPO - ESA) i Mercury Magnetospheric Orbiter (Mio - JAXA) – i zostanie porzucony w przestrzeni kosmicznej. MPO i MMO trafią zaś na orbitę planety.
      Podczas niedawnego przelotu aparat M-CAM 1 wykonał pierwsze ujęcia powierzchni Merkurego. Mijając terminator – linię między dzienną a nocną stroną planety – miał unikatową możliwość zajrzenia do wiecznie zacienionych kraterów. Krawędzie kraterów Prokofjew, Kandinski, Tolkien i Gordimer rzucają wieczny cień na ich dno. To zaś czyni te kratery jednymi z najchłodniejszych miejsc w Układzie Słonecznym. I dzieje się tak pomimo tego, że Merkury jest planetą najbliższą Słońca.
      Mamy przesłanki, by przypuszczać, że na dnie tych kraterów znajduje się woda. Czy rzeczywiście ona tam jest? To jedno z najważniejszych pytań, na jakie ma odpowiedzieć misja BepiColombo.
      Na lewo od bieguna północnego M-CAM 1 sfotografował rozległe równiny wulkaniczne zwane Borealis Planitia. Te największe równiny najmniejszej planety Układu Słonecznego powstały 3,7 miliarda lat temu podczas masowego wypływu lawy. Zalała ona wcześniej istniejące kratery, jak Henri i Lismer. Widoczne na zdjęciach zmarszczki lawy utworzyły się w ciągu miliardów lat po ostygnięciu lawy, prawdopodobnie w wyniku kurczenia się samej planety, której wnętrze powoli stygło.
      Kolejne zdjęcie zostało wykonane przez M-CAM 1 kilka minut po pierwszym. Widać na nim na przykład krater Mendelssohn. Jego krawędzie są ledwie widoczne nad zalanym przez lawę wnętrzem. Podobnie zresztą jest w przypadku krateru Rustaweli.
      Na zdjęciach widzimy też basen Caloris. To największy krater uderzeniowy Merkurego o średnicy ponad 1500 kilometrów. Uderzenie, które go utworzyło, było tak potężne, że na powierzchni planety widać linie ciągnące się przez tysiące kilometrów od krateru. Na górze od basenu Caloris widać jaśniejszą fragment powierzchni w kształcie bumerangu. To lawa, która wydaje się łączyć powierzchnię z wnętrzem Merkurego. Wydaje się, że jej kolor jest podobny do lawy w Caloris na na Borealis Planitia. BepiColombo ma znaleźć odpowiedź na pytanie, w którą stronę ta lawa płynęła. Od czy do Caloris.
      Merkury ma ciemną powierzchnię. Jasne fragmenty są młodsze od reszty. Naukowcy wciąż nie są pewni, jaki dokładnie jest skład planety, jednak jasne jest, że materiał, który wydobył się z wnętrza Merkurego na powierzchnię, ciemnieje z czasem. Na trzecim zdjęciu widzimy więc bardzo jasny obszar Nathair Facula, pozostałość po ostatniej wielkiej erupcji wulkanicznej na Merkurym. Obszar ma co najmniej 300 kilometrów średnicy. Po lewej znajduje się krater Fonteyn. Młody, powstał zaledwie 300 milionów lat temu. BepiColombo będzie badała jasne i ciemne fragmenty Merkurego i pozwoli znaleźć odpowiedź na pytanie, z czego planeta jest zbudowana i jak powstała.
      Główna faza badawcza misji rozpocznie się za dwa lata, ale każdy z 6 dotychczasowych przelotów przyniósł nam niezwykle ważne informacje o tej mało zbadanej planecie, mówi główny naukowiec misji z ramienia ESA, Geraint Jones.
      BepiColombo została wystrzelona 20 października 2018 roku. W jej skład wchodzą dwa orbitery, wspomniane już MPO i Mio. Za ich transport w okolice Merkurego odpowiada zaś Mercury Transfer Module. Pod koniec 2026 roku MTM oddzieli się od orbiterów, które wejdą na orbity biegunowe wokół planety. Badania naukowe rozpoczną na początku 2027 roku. Misja obu orbiterów przewidziana jest na 12 miesięcy, z możliwością przedłużenia jej o kolejny rok.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...