Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy wirocyd z cukru zabija przy kontakcie. Może pomóc w walce z HIV, koronawirusem i opryszczką

Rekomendowane odpowiedzi

Nowy materiał utworzony ze zmodyfikowanego cukru skutecznie zabija wirusy i może być przydany w walce z epidemiami. Międzynarodowy zespół naukowy ma nadzieję, że w ten sposób uda się zwalczać m.in. wirusy opryszczki, zapalenia wątroby typu C, HIV, Zika czy RSV. Testy wykazały, że materiał skutecznie radzi sobie z licznymi wirusami powodującymi choroby układu oddechowego, może więc przydać się z walce z koronawirusami.

Nowa molekuła to efekt współpracy naukowców z Uniwersytetów w Manchesterze, Genewie oraz Politechniki Federalnej w Lozannie. Niszczy ona wirusy, gdy tylko się z nią zetkną.

Obecnie istnieją środki zabijające wirusy w wyniku kontaktu. Tak działają np. wybielacze. Jednak są to środki niezwykle toksyczne dla ludzi i nie mogą być zażywane czy nakładane na skórę. Stworzenie wirocydu z cukrów daje nadzieję na pojawienie się nowej klasy leków antywirusowych, które będą bezpieczne dla ludzi.

Obecnie istniejące leki antywirusowe zwykle hamują rozwój wirusów, jednak nie zawsze skutecznie działają, gdyż wirusy mają dużą zdolność do mutacji.

Teraz na łamach Science Advances dowiadujemy się o zmodyfikowanych molekułach cukru, które w momencie kontaktu niszczą kapsyd, zatem zabijają wirusa, a nie tylko powstrzymują jego wzrost. Istnieją duże szanse, że wirusy nie będą w stanie wyrobić sobie oporności na tak działającą molekułę.

Brytyjsko-szwajcarski zespół naukowy wykorzystał naturalne pochodne glukozy, cyklodekstryny, które zmodyfikowano za pomocą kwasów sulfonowo-merkaptoundekanowych, uzyskując powierzchnię podobną do siarczanu heparanu, który jest wykorzystywany przez wirusy do wiązania się z komórkami gospodarza. W ten sposób wirus jest przyciągany do molekuły i przez nią niszczony.

Podczas testów naukowcy udowodnili, że takie makromolekuły mają szerokie spektrum działania, są biokompatybilne, a w testach in vitro zabijają wiele wirusów, w tym wirusa dengi, Zika, opryszczki (HSV), RSV.  Ponadto uchroniły myszy przed zakażeniem HSV-2. Jakby tego było mało, nowatorska molekuła pozytywnie przeszła test nabywania oporności przez wirusa HSV, którego nie przechodzi np. antywirusowy acyklowir.

Nowa molekuła została już opatentowana, a uczelnie założą firmę, która zajmie się dalszymi badaniami i wprowadzeniem molekuły na rynek. W przyszłości może ona trafić do kremów, maści, sprejów i innych środków medycznych wykorzystywanych do walki z patogenami.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tylko jak można zabić coś, co nie żyje? Nie kojarzyć z A. Lepperem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, dajmon napisał:

Tylko jak można zabić coś, co nie żyje?

Śpieszę z wyjaśnieniem: Z niecałkiem żywego staje się całkiem nieżywy. Ot i cała tajemnica, a ja mam chyba za dużo czasu. :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
      Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
      Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
      Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
      Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas pandemii SARS-CoV-2 widzieliśmy olbrzymie spektrum manifestacji klinicznych zarażenia wirusem, od infekcji bezobjawowych po zgony. Naukowcy z Instytutu Pasteura, francuskiego Narodowego Centrum Badań Naukowych we współpracy ze specjalistami z całego świata przyjrzeli się przyczynom różnic w reakcji układu odpornościowego na SARS-CoV-2 wśród różnych populacji. Wykazali, że utajona infekcja cytomegalowirusem oraz czynniki genetyczne miały swój udział w manifestacjach reakcji organizmu na koronawirusa.
      Wiemy, że głównym czynnikiem ryzyka zgonu jest zaawansowany wiek. Dodatkowymi są płeć męska, choroby współistniejące i czynniki genetyczne oraz immunologiczne. Naukowcy badający wpływ różnych czynników na odpowiedź organizmu na SARS-CoV-2 pobrali próbki krwi od 222 zdrowych ochotników zamieszkujących region od Afryki Środkowej i Europy Zachodniej po Azję Wschodnią. Wykorzystali technikę sekwencjonowania RNA do określenia, w jaki sposób 22 różne rodzaje komórek krwi reaguja na obecność koronawirusa. Następnie połączyli tak uzyskane informacje z wynikami badań układu odpornościowego i genomu osób, od których pobrano krew.
      Naukowcy zidentyfikowali około 900 genów, których reakcja na obecność wirusa była różna u różncyh populacji. Za pomocą statystycznych analiz genetycznych uczeni wykazali, że różnice te wynikają z różnic w składzie krwi. Proporcje poszczególnych typów komórek są różne u różnych populacji. Wiadomo jednak, że na skład krwi mają też wpływ czynniki zewnętrze. Jednym z nich jest infekcja cytomegalowirusem. W Afryce Środkowej jest on obecny u 99% populacji, w Azji Wschodniej u 50% ludzi, a w Europie jego nosicielem jest 32% mieszkańców. Z badań wynika, że utajona infekcja tym wirusem ma wpływ na reakcję organizmu na SARS-CoV-2.
      Ponadto zidentyfikowano około 1200 genów, których ekspresja w warunkach zarażenia SARS-CoV-2 jest różna w różnych populacjach i jest kontrolowana przez czynniki genetyczne i zależy od częstotliwości alleli regulujących te geny. Na ten czynnik miała wpływ presja selekcyjna z przeszłości. Wiemy, że czynniki zakaźne miały olbrzymi wpływ na przeżycie człowieka i wywierały silną presję selekcyjną, która ukształtowała różnice genetyczne na poziomie całych populacji. Wykazaliśmy, że presja selekcyjna z przeszłości wpłynęła na odpowiedź immunologiczną na SARS-CoV-2. Jest to widoczne szczególnie u osób pochodzących z Azji Wschodniej. Około 25 000 lat temu koronawirusy wywarły silną presję selekcyjna na te populacje, mówi Maxime Rotival.
      Na przebieg infekcji miały też wpływ geny odziedziczone po neandertalczykach. Stanowią one ok. 2% genomu mieszkańców kontynentów innych niż Afryka i mamy coraz więcej dowodów na to, że wpływają one na naszą obecność odporność na infekcję. Nie tylko zresztą na nią. Mają też wpływ na to, czy palimy papierosy i pijemy alkohol. Teraz naukowcy zidentyfikowali dziesiątki genów, które zmieniają reakcję na infekcję, a ich obecność to skutek krzyżowania się H. sapiens z neandertalczykiem.
      Wykazaliśmy istnienie związku pomiędzy dawnymi wydarzeniami mającymi wpływ na ewolucję, jak selekcja naturalna czy krzyżowanie się z neandertalczykami, a obecnymi różnicami populacyjnymi w reakcji na infekcję, dodaje profesor Lluis Quintana-Murci.
      Szczegóły badań zostały opisane w artykule Dissecting human population variation in single-cell responses to SARS-CoV-2 opublikowanym na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dżuma trapi ludzkość od 5000 lat. W tym czasie wywołująca ją Yersinia pestis ulegała wielokrotnym zmianom, zyskując i tracąc geny. Około 1500 lat temu, niedługo przed jedną z największych pandemii – dżumą Justyniana – Y. pestis stała się bardziej niebezpieczna. Teraz dowiadujemy się, że ostatnio bakteria dodatkowo zyskała na zjadliwości. Pomiędzy wielkimi pandemiami średniowiecza, a pandemią, która w XIX i XX wieku zabiła około 15 milionów ludzi, Y. pestis została wzbogacona o nowy niebezpieczny element genetyczny.
      Naukowcy z Uniwersytetu Chrystiana Albrechta w Kilonii i Instytutu Biologii Ewolucyjnej im. Maxa Plancka przeanalizowali genom Y. pestis od neolitu po czasy współczesne. Mieli dostęp m.in. do szkieletów 42 osób, które zostały pochowane pomiędzy XI a XVI wiekiem na dwóch duńskich cmentarzach parafialnych.
      Wcześniejsze badania pokazały, że na początkowych etapach ewolucji patogen nie posiadał genów potrzebnych do efektywnej transmisji za pośrednictwem pcheł. Taka transmisja jest typowa dla współczesnej dżumy dymieniczej. W wyniku ewolucji Y. pestis znacząco zwiększyła swoją wirulencję, co przyczyniło się do wybuchu jednych z najbardziej śmiercionośnych pandemii w historii ludzkości, mówi doktor Joanna Bonczarowska z Instytutu Klinicznej Biologii Molekularnej na Uniwersytecie w Kilonii. Podczas naszych badań wykazaliśmy, że przed XIX wiekiem żaden ze znanych szczepów Y. pestis nie posiadał elementu genetycznego znanego jako profag YpfΦ, dodaje uczona. Profag, jest to nieczynna postać bakteriofaga, fragment DNA wirusa, który został włączony do materiału genetycznego zaatakowanej przez niego bakterii.
      Te szczepy Y. pestis, które mają w swoim materiale genetycznym YpfΦ, są znacznie bardziej śmiercionośne, niż szczepy bez tego profaga. Nie można więc wykluczyć, że to jego obecność przyczyniła się do wysokiej śmiertelności podczas pandemii z XIX/XX wieku.
      Naukowcy z Kilonii chcieli szczegółowo poznać mechanizm zwiększonej wirulencji Y. pestis z profagiem YpfΦ. W tym celu przyjrzeli się wszystkim białkom kodowanym przez tę bakterię. Okazało się, że jedno z nich jest bardzo podobne do toksyn znanych z innych patogenów.
      Struktura tego białka jest podobna do enterotoksyny wytwarzanej przez Vibrio cholerae (ZOT - zonula occludens toxin), która ułatwia wymianę szkodliwych substancji pomiędzy zainfekowanymi komórkami i uszkadza błonę śluzową oraz nabłonek, dodaje Bonczarowska. Uczona wraz z zespołem będą w najbliższym czasie badali wspomniane białko, gdyż jego obecność prawdopodobnie wyjaśnia zjadliwość współczesnych szczepów Y. pestis.
      Badacze zwracają uwagę, że szybka ewolucja patogenu zwiększa ryzyko pandemii. Nabywanie nowych elementów genetycznych może spowodować, że pojawią się nowe objawy. To zaś może prowadzić do problemów z postawieniem diagnozy i opóźnienia właściwego leczenia, które jest kluczowe dla przeżycia. Co więcej, niektóre szczepy Y. pestis już wykazują oporność na różne antybiotyki, co dodatkowo zwiększa zagrożenie, stwierdza doktor Daniel Unterweger, który stał na czele grupy badawczej. Naukowcy przypominają, że u innych bakterii również odkryto elementy podobne do YpfΦ, co może wskazywać na ich zwiększoną wirulencję.
      Zrozumienie, w jaki sposób patogen zwiększał swoją szkodliwość w przeszłości, a czasem robił to skokowo, pomoże nam w wykrywaniu nowych jego odmian i w zapobieganiu przyszłym pandemiom, wyjaśnia cel badań profesor Ben Krause-Kyora z Instytutu Klinicznej Biologii Molekularnej.
      Dżuma to wciąż jedna z najbardziej niebezpiecznych chorób. Śmiertelność w przypadku szybko nieleczonej choroby wynosi od 30% (dżuma dymienicza) do 100% (odmiana płucna). Obecnie najczęściej występuje w Demokratycznej Republice Konga, Peru i na Madagaskarze. Zdarzają się jednak zachorowania w krajach wysoko uprzemysłowionych. Na przykład w USA w 2020 roku zanotowano 9 zachorowań, z czego zmarły 2 osoby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytet w Tel Awiwie szukają przyczyny masowego wymierania jeżowców w Morzu Śródziemnym i Zatoce Akaba. W ciągu kilku miesięcy wymarła cała populacja gatunku Diadema setosum zamieszkująca Zatokę Akaba. Badania wykazały, że podobne zjawisko zachodzi również w całym regionie, w tym u wybrzeży Turcji, Grecji, Arabii Saudyjskiej, Egiptu i Jordanii. Tymczasem jeżowce, a szczególnie Diadema setosum, są kluczowym gatunkiem niezbędnym do prawidłowego funkcjonowania raf koralowych.
      Uczeni sądzą, że wśród jeżowców panuje epidemia wywołana przez orzęski, które przedostały się Morza Śródziemnego na Morze Czerwone. Wszczęto alarm i specjaliści zastanawiają się, jak uratować izraelskie rafy koralowe.
      Najpierw zaobserwowano, że w ciągu kilku tygodni wyginęły wszystkie Diadema setosum w jednym z północnych regionów Zatoki. Początkowo sądziliśmy, że to jakieś zanieczyszczenie, zatrucie, może gdzieś doszło do wycieku, z jakiegoś zakładu przemysłowego czy hotelu na północy Zatoki Akaba. Gdy jednak sprawdziliśmy inne miejsca, okazało się, że to nie jest lokalny incydent. Wszystko wskazywało na szybko rozprzestrzeniającą się epidemię. Koledzy z Arabii Saudyjskiej poinformowali nas o podobnych przypadkach. Padły nawet jeżowce, które hodujemy dla celów badawczych w akwariach w naszym Instytucie Międzyuniwersyteckim i jeżowce z Underwater Observatory Marine Park. Patogen prawdopodobnie przedostał się przez system pompujący wodę. To szybka, brutalna śmierć. W ciągu dwóch dni ze zdrowego jeżowca pozostaje szkielet ze znaczącymi ubytkami tkanki. Umierające jeżowce nie są w stanie się bronić przed rybami, te się na nich żywią, co może przyspieszyć rozprzestrzenianie się epidemii, mówi główny autor badań, doktor Omri Bronstein z Wydziału Zoologii Uniwersytetu w Tel Awiwie.
      Doktor Bronstein od lat bada rafy koralowe pod kątem występowania na nich gatunków inwazyjnych. Jednym z gatunków, na których się skupiał jest właśnie D. setosum, czarny jeżowiec o wyjątkowo długich kolcach. To gatunek rodzimy Indo-Pacyfiku, który dzieli się na dwa klady. Jeden występujący na zachodzie Pacyfiku i u wschodnich wybrzeży Afryki i drugi zamieszkujący Morze Czerwone oraz Zatokę Perską. Wybudowanie Kanału Sueskiego otworzyło tropikalnym gatunkom z Indo-Pacyfiku drogę na Morze Śródziemne. D. setosum został zaobserwowany w tym akwenie po raz pierwszy w 2006 roku u wybrzeży Turcji. Od tamtej pory gatunek zwiększył swój zasięg na cały Lewant oraz Morza Jońskie i Egejskie. Globalne ocieplenie dodatkowo zaś przyspiesza inwazję gatunków tropikalnych na wschodnie regiony Morza Śródziemnego.
      Jeżowce, a w szczególności Diadem setosum, to kluczowe gatunki zapewniające zdrowie rafom koralowym. Są one ogrodnikami raf. Żywią się glonami, zapobiegając zaduszeniu przez nie koralowców, z którymi konkurują o dostęp do światła. Niestety jeżowce te nie występują już w Zatoce Akaba, a zasięg ich wymierania szybko rozszerza się na południe, dodaje Bronstein.
      Izraelczycy, po otrzymaniu pierwszych informacji o pojawieniu się na Morzu Śródziemnym inwazyjnego D. setosum, przystąpili do badań nad intruzem. W 2016 roku po raz pierwszy zauważyli ten gatunek u śródziemnomorskich wybrzeży Izraela. Od 2018 odnotowują gwałtowny rozrost jego populacji. Ledwo jednak rozpoczęliśmy badania podsumowujące inwazję jeżowców na Morze Śródziemne, a zaczęliśmy otrzymywać informacje o ich nagłym wymieraniu. Można stwierdzić, że wymieranie inwazyjnego gatunku nie jest niczym niekorzystnym, ale musimy brać pod uwagę dwa zagrożenia. Po pierwsze, nie wiemy jeszcze, jak to wymieranie wpłynie na gatunki rodzime dla Morza Śródziemnego. Po drugie, i najważniejsze, bliskość Morza Śródziemnego i Czerwonego zrodziła obawy o przeniesienie się patogenu na na rodzimą populację jeżowców na Morzu Czerwonym. I tak się właśnie stało, wyjaśnia Bronstein.
      To, co dzieje się obecnie na Morzu Śródziemnym i Czerwonym przypomina zjawiska znane z Karaibów. W 1983 roku nagle wymarły tam jeżowce, a rafy koralowe zostały zniszczone przez glony. W ubiegłym roku sytuacja się powtórzyła. A dzięki nowym technologiom i badaniom przeprowadzonym przez naukowców z Cornell University wiemy, że przyczyną zagłady jeżowców na Karaibach były pasożytnicze orzęski. Stąd też podejrzenie, że to one są przyczyną wymierania jeżowców u zbiegu Europy, Afryki i Azji.
      Diadema setosum to jeden z najbardziej rozpowszechnionych na świecie gatunków jeżowców. Sytuacja jest naprawdę poważna. W Morzu Czerwonym wymieranie przebiega błyskawicznie i już objęło większy obszar, niż w Morzu Śródziemnym. Wciąż nie wiemy, co dokładnie zabija jeżowce. Czy to orzęski, jak na Karaibach, czy też jakiś inny czynnik? Tak czy inaczej jest on z pewnością przenoszony przez wodę, dlatego też obawiamy się, że wkrótce wyginą wszystkie jeżowce w Morzu Śródziemnym i Czerwonym, martwi się Bronstein.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Długi COVID dotyka mniej więcej co piątej osoby, która miała COVID, mówi profesor Bren Palmer z University of Colorado. Jest  opisywany, jako objawy, które trwają dłużej niż 4 tygodnie po zarażeniu. Objawy te to m.in. ból w klatce piersiowej, kaszel, krótki oddech, mgła mózgowa i zmęczenie, dodaje. Palmer, ekspert od HIV, uważa, że przyczyną długiego COVID są ukryte w organizmie rezerwuary wirusa, które powodują, że starający się je zwalczyć układ odpornościowy staje się nadaktywny.
      Palmer, który od lat bada wirusa HIV, już w 2020 roku zainteresował się przyczynami długiego COVID (zwanego też PASC – post-acute sequelae SARS-CoV-2) . W 2020 roku zaczął badać grupę 40 osób, które zachorowały na COVID, a z których 20 całkowicie wyzdrowiało, a u 20 pojawiły się objawy długiego COVID. Wraz z pulmonolog Sarah Jolley, która kieruje UCHealth Post-COVID Clinic for PASC analizował próbki kału i krwi badanych, poszukując specyficznych limfocytów T aktywnych po wyleczeniu z początkowej infekcji. Naukowcy skupiali się szczególnie na poszukiwaniu limfocytów CD4 i CD8. U osób z PASC znaleźliśmy niezwykle wysoki poziom cytotoksycznych komórek CD8 T. Było ich nawet 100-krotnie więcej niż u osób, u których długi COVID się nie rozwinął, mówi uczony. Palmer był zaskoczony faktem, że sześć miesięcy po wyleczeniu z początkowej infekcji aż połowa limfocytów T wykazywała aktywność przeciwko COVID-19. To zdumiewająco dużo, znacznie więcej niż w przypadku infekcji HIV, gdzie wirus bez przerwy się replikuje, mówi naukowiec.
      Naukowcy stwierdzili też, że istnieje odwrotna zależność pomiędzy ilością specyficznych dla COVID-19 limfocytów T we krwi, a wydajnością płuc. Im we krwi więcej limfocytów T specyficznych dla COVID, tym gorsze wyniki testów wydajności płuc, mówi Palmer. To zaś bardzo silnie wskazuje, że obecność limfocytów T napędza długi COVID. Wyniki te skłoniły Palmera do wysunięcia hipotezy, że ukryte w organizmie rezerwuary wirusa SARS-CoV-2 są przyczyną ciągłego stanu zapalnego, nadmiernej aktywności układu odpornościowego i występowania objawów długiego COVID. To nadmierna reakcja układu odpornościowego powoduje te objawy. Uważamy, że gdzieś w organizmie jest rezerwuar wirusa, którego nie można wykryć za pomocą wymazów z nosa czy gardła. U osób, które zmarły z powodu COVID wirus był wszędzie. Podczas autopsji znajdowano go w mózgu, nerkach, płucach i jelitach, przypomina uczony.
      Z artykułu opublikowanego właśnie z piśmie Gut dowiadujemy się, że Palmer we współpracy z profesor Catherine Lozupone przeanalizowali próbki kału od pacjentów z PASC i wykazali, że skład flory bakteryjnej jelit u tych osób jest powiązany z markerami stanu zapalnego znalezionymi we krwi. To zaś wskazuje na związek pomiędzy mikrobiomem jelit a stanem zapalnym w przebiegu długiego COVID.
      Zdaniem Palmera, oba przeprowadzone przez niego badania sugerują, że leki przeciwwirusowe takie jak Paxlovid mogą być skuteczne w leczeniu PASC. Niektóre z badań wskazywały, że zaszczepienie pacjentów z długim COVID powodowało u nich zmniejszenie objawów. Szczepionka dodatkowo pobudza układ odpornościowy, być może dzięki temu jego odpowiedź jest wówczas bardziej skuteczna, udaje się zlikwidować rezerwuary wirusów i stąd zmniejszenie objawów. Z kolei inne badania wykazały, że po podaniu Paxlovidu zostaje zatrzymana replikacja wirusa, a to prowadzi do zmniejszenia aktywności układu odpornościowego. To zaś sugeruje, że podawanie Paxlovidu może być skutecznym lekiem na długi COVID. Jednocześnie wyniki takie wydają się potwierdzać hipotezę, że gdzieś w organizmie mamy ukryty rezerwuar wirusa, do którego nie mamy dostępu, stwierdza naukowiec.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...