Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jedna z najjaśniejszych gwiazd, nadolbrzym Betelgeza wkrótce wybuchnie?

Recommended Posts

Czerwony nadolbrzym Betelgeza, jedna z najjaśniejszych gwiazd na niebie, przygasła w ciągu ostatnich tygodni bardziej niż przez ostatnie sto lat. Podekscytowani astronomowie z całego świata zastanawiają się co to oznacza. Nie można wykluczyć, że gwiazda wybuchnie i zamieni się w supernową. Nadolbrzymy wciąż kryją wiele zagadek, a naukowcy mają nadzieję, że dzięki obserwowanemu właśnie procesowi, dowiedzą się więcej o takich gwiazdach.

Astronomowie od ponad wieku obserwują, jak Betelgeza raz przygasa, raz robi się jaśniejsza. Materia z gwiazdy wędruje ku jej powierzchni i ponownie tonie w jej wnętrzu, powodując, że powierzchnia jest raz chłodniejsza, raz cieplejsza. Stąd właśnie zmienna jasność gwiazdy.

Richard Wasatonic, astronom z Villanova Univrsity w Pennsylvanii od 25 lat dokonuje pomiarów jasności Betelgezy za pomocą niewielkiego prywatnego teleskopu. W październiku wraz ze swoim kolegą Edwardem Guinanem i astronomem-amatorem Thomasem Calderwoodem zauważyli, że Betelgeza ponownie przygasa. Do grudnia stała się ciemniejsza niż w ciągu ostatnich 25 lat.

Na łamach witryny The Astronomer's Telegram poinformowali o tym innych astronomów. Każdej nocy była ciemniejsza niż nocy poprzedniej, mówi Guinan. Obserwujący spodziewali się, że wkrótce gwiazda przestanie zmniejszać swoją jasność. Jednak tak się nie stało. Dnia 23 grudnia zaktualizowali swój wpis, stwierdzając, że Betelgeza nadal przygasa i jest już ciemniejsza niż była w ciągu ostatni 100 lat, czyli w całym okresie, w którym nauka mierzy jasność gwiazd za pomocą urządzeń, a nie ocenia ją „na oko”.
Betelgeza, która jest zwykle 6. lub 7. najjaśniejszą gwiazdą na niebie, do połowy grudnia bieżącego roku stała się 21. najjaśniejszą gwiazdą nieboskłonu.

Nic więc dziwnego, że pojawiły się głosy, iż możemy być świadkami końca Betelgezy. Na podstawie obliczeń masy astronomowie stwierdzili, że Betelgeza stanie się supernową w wieku około 9 milionów lat. Właśnie tyle mniej więcej lat liczy sobie gwiazda. Już jakiś czas temu obliczano, że Betelgeza stanie się supernową w ciągu najbliższych 100 000 lat. Jeśli nadolbrzym wybuchnie stanie się dla nas tak jasny, jak połowa jasności Księżyca w pełni. Przez wiele miesięcy będziemy mogli obserwować taką supernową nawet za dnia. Nie powinniśmy się jednak obawiać o nasze bezpieczeństwo, gdyż gwiazda znajduje się w odległości około 420 – 640 lat świetlnych od Ziemi.

Niejednokrotnie mieli dotychczas okazję badać supernowe. Nigdy jednak nie udało się obserwować procesów zachodzących zanim gwiazda stanie się supernową. Stąd też nie wiadomo, czy obecne przygasanie gwiazdy oznacza jej rychły koniec.

Betelgeza już kilkukrotnie zwracała na siebie naszą uwagę. Przed 10 laty informowaliśmy, że gwiazda mocno się skurczyła, ale jej jasność nie spadła. Po kilku latach astronomowie odkryli tajemniczą wielką ścianę pyłu, w kierunku której zmierza Betelgeza, a z którą w przyszłości się zderzy. Niedługo później na Betelgezie zaobserwowanie istnienie gorących punktów, a trzy lata temu okazało się, że gwiazda obraca się szybciej, niż powinna.


« powrót do artykułu

Share this post


Link to post
Share on other sites
2 hours ago, KopalniaWiedzy.pl said:

gdyż gwiazda znajduje się w odległości około 420 lat świetlnych od Ziemi

Mam jeszcze lepszą wiadomość (o ile dane bardziej aktualne) - w internetach piszą, że to raczej 640.

Share this post


Link to post
Share on other sites

:) No właśnie trudno to rozstrzygnąć. :) Bo np. National Radio Astronomy Observatory twierdzi, że 520 :) Ale faktem jest, że lepiej zakres podać. Już poprawiam, dzięki :)

 

Share this post


Link to post
Share on other sites

Betelgeza wybuchnie jako supernowa i przestanie być widoczna. Czy wpłynie to na opis samej konstelacji Oriona, poza utratą określenia Alfy dla Betelgezy? Orion bez ramienia kiepsko będzie wyglądać.

Może są jakieś zasady, poza tymi historycznymi, opisów nieba. Coś czuję, że będzie dyskusja jak ta czy Pluton to planeta.

Share this post


Link to post
Share on other sites

Najpierw musimy dożyć momentu wybuchu. Aktualne szacunki dają nam na to marne szanse. Możliwe, że obecne przygaszenie nie jest niczym szczególnym i Betelgeza ma przed sobą jeszcze kilka tysięcy lat życia.

Share this post


Link to post
Share on other sites
W dniu 2.01.2020 o 16:24, pogo napisał:

Najpierw musimy dożyć momentu wybuchu. Aktualne szacunki dają nam na to marne szanse. Możliwe, że obecne przygaszenie nie jest niczym szczególnym i Betelgeza ma przed sobą jeszcze kilka tysięcy lat życia.

Albo faktycznie wybuchła 420 lat temu i za kilka miesięcy sie o tym przekonamy

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze, badając populacje gwiazd poza Drogą Mleczną, dokonali odkrycia, które może zmienić nasze rozumienie wielu procesów astronomicznych, w tym tworzenia się czarnych dziur, powstawania supernowych oraz tego, dlaczego galaktyki umierają.
      Od lat 50. ubiegłego wieku przyjmuje się, że populacje gwiazd w innych galaktykach są podobne do tej, którą obserwujemy w Drodze Mlecznej – składają się one z gwiazd o dużej, średniej i małej masie. Duńscy naukowcy, na podstawie obserwacji 140 000 galaktyk do których analizy wykorzystano liczne zaawansowane modele, doszli do wniosku, że rozkład mas gwiazd w innych galaktykach wcale nie jest podobny do tego, co obserwujemy w najbliższym sąsiedztwie. Okazało się, że w odległych galaktykach gwiazdy mają zwykle większą masę niż w Drodze Mlecznej i u jej sąsiadów.
      Masa gwiazd wiele nam mówi. Jeśli zmienimy masę gwiazd, zmieni się też liczba supernowych oraz czarnych dziur powstających z masywnych gwiazd. Zatem uzyskane przez nas wyniki oznaczają, że musimy jeszcze raz rozważyć wiele naszych założeń, gdyż odległe galaktyki wyglądają inaczej niż nasza, mówi główny autor badań, Alber Sneppen z Instytutu Nielsa Bohra.
      Założenie, że rozkład wielkości i mas gwiazd z w odległych galaktykach jest taki sam jak w naszej, przyjęto przed około 70 laty dlatego, że nie wyliśmy w stanie wystarczająco szczegółowo galaktyk tych badać. Widzieliśmy jedynie wierzchołek góry lodowej i od dawna podejrzewaliśmy, że założenie, iż inne galaktyki wyglądają jak nasza, nie jest zbyt dobrym założeniem. Nikt jednak nie próbował dowieść, że w innych galaktykach populacje gwiazd wyglądają inaczej. Nasze badania pozwoliły nam to wykazać, a to otwiera drogę do lepszego zrozumienia tworzenia się galaktyk i ich ewolucji, wyjaśnia profesor Charles Steinhardt.
      Naukowcy wykorzystali katalog COSMO, wielką międzynarodową bazę danych zawierającą ponad milion obserwacji światła z galaktyk, od takich znajdujących się w naszym najbliższym sąsiedztwie, po obiekty odległe o 12 miliardów lat świetlnych. Autorzy analizy twierdzą na przykład, że odkryli, dlaczego w pewnym momencie galaktyki przestają tworzyć nowe gwiazdy. Teraz, gdy lepiej określiliśmy masy gwiazd, widzimy nowy wzorzec. Najmniej masywne galaktyki tworzą gwiazdy, a bardziej masywne ich nie tworzą. To wskazuje, że istnieje uniwersalny trend opisujący śmierć galaktyk, mówi Sneppen.
      Z badań wynika również, że większość galaktyk posiada bardziej masywne populacje gwiazd, niż sądzono. Ze szczegółami pracy można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie odkryli nowy typ eksplozji gwiazd – mikronową. Do tego typu eksplozji dochodzi na powierzchni niektórych gwiazd, a w ich wyniku w ciągu kilku godzin wypaleniu ulega nawet 20 x 1015 ton materiału tworzącego gwiazdę.
      Odkryliśmy zjawisko, które nazwaliśmy mikronową. Jego istnienie rzuca wyzwanie naszemu rozumieniu, w jaki sposób w gwiazdach dochodzi do eksplozji termojądrowych. Dotychczas sądziliśmy, że wiemy, jak to się dzieje. Jednak to odkrycie pokazuje, że eksplozje takie mogą powstawać w zupełnie nowy sposób, mówi Simone Scaringi z Durham University, który stał na czele zespołu badawczego.
      Mikronowe to potężne wydarzenia w małej skali. Niosą ze sobą znacznie mniej energii niż znane nam od wieków nowe. Oba typy eksplozji łączy rodzaj gwiazd, mają one bowiem miejsce na białych karłach. To martwe gwiazdy o masie podobnej do masy Słońca, ale średnicy Ziemi.
      Gdy biały karzeł występuje w układzie podwójnym, może wysysać materię swojego towarzysza. Gdy ta materia opada na bardzo gorącą powierzchnię białego karła dochodzi do eksplozji, w wyniku której atomy wodoru łączą się, tworząc atom helu. W nowych eksplozja termonuklearna ma miejsce na całej powierzchni gwiazdy. Takie powodują, że biały karzeł pali się i jasno świeci przez wiele tygodni, wyjaśnia współautorka badań, Nathalie Degenaar z Uniwersytetu w Amsterdamie.
      Z kolei mikronowe to podobne eksplozje, do których dochodzi w mniejszej skali. Trwają one zaledwie kilka lub kilkanaście godzin. Zarejestrowano je na niektórych białych karłach o bardzo silnym polu magnetycznym, które kieruje opadający na gwiazdę materiał w stronę jej biegunów. Po raz pierwszy obserwowaliśmy zlokalizowaną fuzję wodoru. Wodorowe paliwo zostaje uwięzione w pobliżu biegunów niektórych białych karłów i tylko tam dochodzi do fuzji, dodaje Paul Groot z Radbound University. To zaś prowadzi do mikroeksplozji o sile 1/1 000 000 nowych, stąd też nazwa mikronowa, wyjaśnia uczony.
      Odkrycie mikronowych to wyzwanie dla obecnego rozumienia gwiezdnych eksplozji. To pokazuje, jak dynamicznym miejscem jest wszechświat. Takie zjawiska mogą często występować, ale jako że trwają krótko, trudno jest je uchwycić, dodaje Scaingi.
      Naukowcy dokonali odkrycia przypadkiem, przeglądając dane z Transiting Exoplanet Survey Satellite (TESS). Odkryliśmy w nich coś niezwykłego. Jasny rozbłysk w paśmie optyczny, który trwał kilka godzin. Podczas dalszych poszukiwań znaleźliśmy kilkanaście podobnych sygnałów, mówią naukowcy. W danych z TESS znaleziono trzy mikronowe, z czego dwie miały miejsce na białych karłach. Potwierdzenie, że i w przypadku trzeciej eksplozji mieliśmy do czynienia z białym karłem, wymagało wykorzystania instrumentu X-shooter z Very Large Telescope. Dzięki niemu zidentyfikowano zaś kolejne mikronowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Hubble'a pobił wyjątkowy rekord – zaobserwował najdalej od Ziemi położoną indywidualną gwiazdę. Dotychczasowy rekord również należał do Teleskopu Hubble'a i został pobity w 2018 roku, kiedy to zaobserwowano MACS J1149+2223 Lensed Star 1 położoną w odległości 9 miliardów lat świetlnych od Ziemi. Rekord ten właśnie pobito i to od razu o miliardy lat świetlnych.
      Nowo zaobserwowana gwiazda znajduje się w odległości 12,9 miliarda lat świetlnych od naszej planety. Współczynnik przesunięcia ku czerwieni (redshift) dla tej odległości wynosi 6,2. Niemal nie mogliśmy w to uwierzyć, bo gwiazda znajduje się znacznie dalej, niż poprzedni rekord, mówi Brian Welch z Uniwersytetu Johnsa Hhopkinsa, główy autor artykułu opisującego osiągnięcie.
      Odkrycia dokonano w danych zebranych w ramach projektu Hubble's RELICS (Reionization Lensing Cluster Survey). Normalnie przy tych odległościach całe galaktyki wyglądają jak niewielkie smugi, w których światło milionów gwiazd zlewa się w jedno. Światło z galaktyki, w której znajduje się ta gwiazda zostało powiększone i rozproszone przez zjawisko soczewkowania grawitacyjnego w długi sierp, który nazwaliśmy Łukiem Wchodzącego Słońca, mówi Welch.
      Podczas szczegółowego badania galaktyki naukowcy zauważyli, że jedno z obserwowanych zjawisk jest powodowane przez ekstremalnie powiększoną w soczewkowaniu grawitacyjnym gwiazdę. Została ona nazwana Earendel, co w języku staroangielskim oznacza gwiazdę poranną. Odkrycie daje nadzieję na otwarcie całkiem nowego pola badań nad formowaniem się wczesnych gwiazd.
      Earendel powstała tak dawno, że może nie zawierać tych samych pierwiastków, co młodsze gwiazdy. Dzięki możliwości zbadania Earendel zyskamy okazję to przyjrzenia się wszechświatowi, jakiego nie znamy, ale który doprowadził do tego, co istnieje obecnie. To tak, jakbyśmy dotychczas czytali bardzo interesującą książkę, ale zaczęli od drugiego rozdziału, a teraz mieli okazję przeczytać, jak to wszystko się zaczęło, ekscytuje się Welch.
      Badacze sądzą, że Earendel ma masę co najmniej 50 razy większą od masy Słońca i jest miliony razy jaśniejsza od naszej gwiazdy. Mimo tego, że jest tak olbrzymia i jasna, nie bylibyśmy w stanie jej dostrzec z odległości, w jakiej się znajduje. Widzimy ją dzięki olbrzymiej gromadzie galaktyk WHL0137-08, który znajduje się między gwiazdą a Ziemią. Masa gromady zagina przestrzeń, działając jak olbrzymie szkło powiększające, dzięki któremu możemy dostrzec światło emitowane przez obiekty znajdujące się poza WHL0137-08.
      Szczęśliwie złożyło się, że Earendel znajduje się w takiej pozycji, iż jest maksymalnie powiększana przez soczewkę grawitacyjną tworzoną przez gromadę galaktyk. Dzięki temu „wystaje” z blasku milionów gwiazd swojej galaktyki macierzystej, a jej jasność jest wzmacniana przez soczewkę co najmniej tysiąckrotnie. Obecnie niw wiemy, czy Earendel jest częścią układu podwójnego, ale warto pamiętać, że większość masywnych gwiazd ma co najmniej jednego towarzysza.
      Specjaliści uważają, że przez wiele kolejnych lat Earendel będzie znacząco powiększana w wyniku soczewkowania. Gwiazdę będzie obserwował Teleskop Kosmiczny Jamesa Webba (JWST), a dzięki temu, że pracuje on głównie w podczerwieni, pozwoli na zdobycie wielu cennych informacji na jej temat. Uczeni spodziewają się, że Webb potwierdzi, iż Earendel to gwiazda, pozwoli nam też zmierzyć jej jasność i temperaturę, to zaś pozwoli na określenie typu gwiazdy i etapu życia, na jakim się znajduje.
      Astronomów szczególnie interesuje skład Earendel, gdyż gwiazda powstała zanim jeszcze wszechświat został wypełniony ciężkimi pierwiastkami wytworzonymi przez kolejne generacje gwiazd. Jeśli okaże się, że Earendel składa się wyłącznie w pierwotnego wodoru i helu, będzie to pierwszy dowód na istnienie gwiazd III populacji. To hipotetyczna populacja pierwszych bardzo masywnych gwiazd, które praktycznie nie zawierały metali. Składały się wyłącznie z wodoru i helu, z możliwą niewielką zawartością litu.
      Odkrycie Earendel przez Hubble'a daje nadzieję, że Webb dojrzy jeszcze bardziej odległe gwiazdy.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Webba zbliża się do końca pierwsze fazy ustawiania zwierciadła głównego za pomocą NIRCam. Najpierw przysłał nam swoje selfie, a niedawno na Ziemię dotarło pierwsze zdjęcie HD 84406, gwiazdy, która będzie wykorzystywana do ustawiania zwierciadła. Obraz, który uzyskał teleskop jest bardzo podobny do tego, jaki otrzymywano podczas symulacji naziemnych.
      Tak, jak zapowiadano, HD 84406 zobaczyliśmy 18 razy, po jednym z każdego segmentu. Następnie obsługa naziemna poruszała poszczególnymi segmentami, by określić, z którego z nich pochodzi które zdjęcie. Obecnie trwa etap tworzenia „macierzy obrazów”, czyli takiego ustawiania segmentów, by wszystkie z uzyskanych obrazów miały wspólny punkt.
      Przeprowadzenie pierwszego etapu nie było proste. Najpierw trzeba było upewnić się, że NIRCam działa jak należy, a następnie zidentyfikować na wszystkich obrazach gwiazdę, która stanowi punkt odniesienia do ustawiania teleskopu. Przez kolejny miesiąc obsługa naziemna będzie ustawiała poszczególne segmenty zwierciadła oraz zwierciadło wtórne tak, byśmy w końcu otrzymali pojedynczy wyraźny obraz.
      Jesteśmy niezwykle zadowoleni z postępu prac nad ustawianiem zwierciadła. Naprawdę jesteśmy szczęśliwi widząc, jak światło trafia do NIRCam, mówi Marcia Rieke, profesor astronomii z University of Arizona, odpowiedzialna z instrument NIRCam.
      Proces wykonywania zdjęć rozpoczął się od ustawienia Teleskopu Webb w 156 różnych pozycjach, z których powinien zobaczyć HD 84406. Za pomocą 10 czujników NIRCam wykonano 1560 fotografii o łącznej pojemności 54 gigabajtów. Cały proces trwał niemal 25 godzin. Teleskop już w ciągu pierwszych 6 godzin zlokalizował gwiazdę i wykonał jej zdjęcia z pomocą każdego z segmentów zwierciadła. Fotografia połączono następnie w jedną. Przedstawione tutaj zdjęcie to centralny fragment olbrzymiej fotografii złożonej z 2 miliardów pikseli.
      Podczas wstępnego ustawiania prześledziliśmy fragment nieboskłonu o powierzchni niemal Księżyca w pełni. Zgromadzenie tak dużej ilości danych wymagało zarówno od instrumentów Webba, jak i urządzeń na Ziemi, by działały bez najmniejszych zakłóceń od samego początku. Okazało się, że światło z każdego z 18 segmentów jest skupione bardzo blisko centrum obszaru poszukiwań. To świetny punkt wyjścia do ustawiania zwierciadła, cieszy się Marshall Perrin ze Space Telescope Science Institute, zastępca głównego naukowca Webba.
      Zwierciadło główne ustawiane jest za pomocą urządzenia NIRCam. Dysponuje ono bowiem czujnikiem o bardzo szerokim polu widzenia, który bezpiecznie może pracować w temperaturach wyższych niż inne instrumenty naukowe teleskopu. Warto tutaj wspomnieć, że prace nad optyką Webba zaowocowały opracowaniem technologii COAS (Complete Ophthalmic Analysis System), która jest wykorzystywana w okulistyce i systemach korekcji wzroku iLASIK.
      NIRCam będzie wykorzystywany przez niemal cały czas ustawiania zwierciadła głównego. Trzeba jednak wiedzieć, że instrument pracuje w temperaturach znacznie wyższych niż idealne dlatego na rejestrowanych przezeń obrazach pojawiają się artefakty. Będzie ich coraz mniej w miarę schładzania instrumentu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trzy nowo odkryte egzoplanety znajdują się na krawędzi zagłady – informują naukowcy z Instytutu Astronomii University of Hawai'i. Gazowe olbrzymy, zauważone po raz pierwszy przez teleskop kosmiczny TESS, znajdują się na jednych z najbardziej ciasnych znanych nam orbit. Jedna z nich, TOI-2337b, jest tak blisko swojej gwiazdy, że zostanie przez nią zniszczona za mniej niż milion lat. Żadnej innej znanej nam egzoplanety nie czeka tak szybka zagłada.
      Takie badania są kluczowe dla zrozumienia ewolucji układów planetarnych. Dają nam one nowy wgląd na planety zbliżające się do kresu życia, bezpośrednio przed pochłonięciem ich przez gwiazdę, mówi główny autor badań, Samuel Grunblatt z Amerykańskiego Muzeum Historii Naturalnej.
      Naukowcy szacują, że masa wspomnianych egzoplanet wynosi od 0,5 do 1,7 masy Jowisza, a ich średnice to od nieco mniejszej od średnicy Jowisza, po 1,6 jego średnicy. Istnieją też znaczne różnice w gęstości planet, a wszystko to wskazuje na różne ich pochodzenie.
      Uczeni sądzą, że ich odkrycie to dopiero czubek góry lodowej. Dzięki takim systemom jak TESS spodziewamy się znaleźć setki, a nawet tysiące takich systemów planetarnych, co pozwoli nam poznać nowe szczegóły na temat interakcji planet pomiędzy sobą czy ich migracji w kierunku gwiazdy macierzystej, dodaje jeden z autorów badań, Nick Saunders.
      Wspomniane trzy planety zostały zaobserwowane przez teleskop TESS w roku 2018 i 2019. Grunblatt i jego zespół wykorzystali następnie Obserwatorium Keck na Hawajach, by potwierdzić istnienie egzoplanet i poznać szczegóły na ich temat.
      Obecnie obowiązujące modele przewidują, że planety powinny zbliżać się do swoich gwiazd, szczególnie w ciągu ostatnich 10% czasu życia gwiazdy. W miarę zbliżania się planety coraz bardziej powinny się nagrzewać, co spowoduje rozszerzanie się ich atmosfer. Z tych samych modeli wynika, że zbliżające się do gwiazdy planety będą jednocześnie zbliżały się do siebie, co zwiększa i ryzyko kolizji i ryzyko zdestabilizowania całego układu planetarnego.
      Autorzy odkrycia sugerują jednocześnie, że jednej z planet – TOI-4329 – powinien przyjrzeć się Teleskop Kosmiczny Jamesa Webba (JWST). Może on zauważyć w jej atmosferze ewentualne ślady wody lub dwutlenku węgla. Jeśli by je znalazł, specjaliści mogliby więcej powiedzieć na temat ewolucji tej planety.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...