Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Gęste antarktyczne wody powracają na Atlantyk. Naukowcy zaskoczeni zmianą trendu

Recommended Posts

Po raz pierwszy od 2014 roku doszło do ustabilizowania się, a nawet do niewielkiego wzrostu, dostaw gęstych antarktycznych wód z dna oceanu do Atlantyku. Przez wiele lat dostawy tych wód się zmniejszały. Nowe badania wykazały, że od 2014 roku sytuacja się stabilizuje, a nawet nieco poprawia. Będzie to miało wpływ na klimat całej planety.

Woda morska, która po dotarciu do Antarktyki ulega schłodzeniu, zanurza się pod cieplejsze warstwy i opada na dno, tworząc głębinowe wody antarktyczne (AABW). Są one obecne we wszystkich oceanach i stanowią w nich największą objętościowo masę wody. Szacuje się, że to wody położone głębiej niż 2000 metrów pochłonęły aż 1/6 energii zgromadzonej w systemie klimatycznym planety. Od wielu dekad obserwuje się jednak, że ilość najgęstszych frakcji tej wody zmniejsza się w Morzu Scotia, które jest z kolei kluczową bramą dla wód z Morza Weddela w kierunku światowego oceanu.

Badacze z British Antarctic Survey przyjrzeli się danym z lat 1989–2018 zebranym podczas pomiarów temperatury i zasolenia wód, które zostały wykonane przez brytyjskie, niemieckie i amerykańskie wyprawy naukowe. Zmiany na Morzu Scotia połączyli ze zmianami na Morzu Weddella, związanymi prawdopodobnie ze zmianami w rozkładzie wiatrów, formowaniu się lodu morskiego i napływie wody z lodowców Antarktydy.

Badania te rzucają światło na związek pomiędzy głębokimi partiami Oceanu Południowego, a całą cyrkulacją oceaniczną, który zapobiega szybkiemu ocieplaniu się klimatu dzięki uwięzieniu znacznych ilości antropogenicznego węgla w głębi oceanu. Zmniejszenie gęstości głębokich wód oceanicznych, co jest spowodowane przez wyższe temperatury i zwiększone topnienie lodu, prowadzi do osłabienia tej cyrkulacji, co ma wpływ na klimat.

Głębokie partie wód oceanicznych ocieplają się od wielu dekad na całym świecie. Byliśmy więc zaskoczeni, gdy nagle stwierdziliśmy odwrócenie i ustabilizowanie się tego trendu na Morzu Scotia. Nie wiemy, czy oznacza to odwrócenie trendów czy jedynie jest to chwilowa przerwa w obserwowanych trendach, wiemy, że musimy lepiej zrozumieć procesy, którym podlegają masy wody w pobliżu Antarktyki, mówi doktor Povl Abrahamsen, główny autor badań.

Współautor badań, doktor Kurt Polzin z Woods Hole Oceanographic Institution, dodaje: Morze Scotia to unikatowy region, gdyż zachodzą w nim liczne fizyczne mechanizmy, które powodują, że gęste wody stają się lżejsze na dość niewielkim obszarze południowej części tego morza. Ten niewielki basen pozwala nam na badanie olbrzymich mas wody i zachodzących zmian w okresach rocznych. W innych miejscach musielibyśmy prowadzić badania w skali dekad.

Z kolei doktor Andrew Meijers podkreśla, że po raz pierwszy udało się zaobserwować tak znaczące zmiany w tych głęboko położonych wodach, zachodzące w tak krótkim czasie. To pokazuje, że głęboki ocean może ulegać szybszym zmianom, niż sądzono. To sugeruje, że zmiany klimatyczne na dużą skalę, które dotyczą Antarktyki i Oceanu Południowego, mogą niespodziewanie się odwrócić, co ma duże znaczenie na skalę globalną, dodaje profesor Alberto Naveira Garabato z University of Southampton.


« powrót do artykułu

Share this post


Link to post
Share on other sites
7 hours ago, KopalniaWiedzy.pl said:

gęste wody stają się lżejsze

No proszę - można pomyśleć, że ci eko-klimatolodzy to banda hochsztaplerów, a oni dali światu antygrawitację.

  • Downvote (-1) 1

Share this post


Link to post
Share on other sites

 

32 minuty temu, Przemek Kobel napisał:
8 godzin temu, KopalniaWiedzy.pl napisał:

gęste wody stają się lżejsze

No proszę - można pomyśleć, że ci eko-klimatolodzy to banda hochsztaplerów, a oni dali światu antygrawitację

 

Wyrywając  z kontekstu, można manipulować, byleby tylko sobie samopoczucie poprawić, a komuś dowalić.

 

8 godzin temu, KopalniaWiedzy.pl napisał:

zachodzą w nim liczne fizyczne mechanizmy, które powodują, że gęste wody stają się lżejsze

Coś niejasne?  Pytać dzieci z podstawówki.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Olaboga, Przemek!

Co zmienia gęstość wody? :excl:

Wstyd na tym portalu tłumaczyć.:(

 

Edited by 3grosze

Share this post


Link to post
Share on other sites
39 minut temu, Przemek Kobel napisał:

Już jasne? Myśleć...

Można sobie wyobrazić co najmniej dwa scenariusze w których woda się ogrzewa a jej gęstość rośnie. Niestety nie mam czasu sprawdzić u źródeł.

Potrzeba jeszcze trochę liczb bo: gęstość(T) wody jest nieliniowa - minimum gdzieś w 4 stopniach oraz gęstość zależy od zasolenia.

 

Godzinę temu, Przemek Kobel napisał:

gęste wody stają się lżejsze

aaaa! dopiero zajarzyłem! No tak, w języku polskim dość często zamieniamy ciężkie w sensie gęste i w gęste w sensie lepkie. Zwykle daję radę z kontekstu wydobyć o który rodzaj gęstości chodzi. W tym przypadku nie mam żadnych wątpliwości :D

Share this post


Link to post
Share on other sites

Up

Przynajmniej jakieś pozytywy z reformy szkolnictwa PiS i póżne rozpoczynanie lekcji w podstawówkach (jest teraz godz.10)

 

PS

Takie żarty to tylko z Jajcentym!:)

36 minut temu, Jajcenty napisał:

gęstość(T) wody jest nieliniowa - minimum gdzieś w 4 stopniach

Akurat maksimum, ale to szczegół.;)

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Godzinę temu, 3grosze napisał:

Akurat maksimum, ale to szczegół.

tak, tak. to drugie minimum. To przez to pieprzone skojarzenie z dnem oceanu i w ogóle dzisiaj zamiast kawy nasypałem sobie otrębów - wszystko przez te GO i upały. 

Edited by Jajcenty

Share this post


Link to post
Share on other sites
5 godzin temu, Przemek Kobel napisał:
12 godzin temu, KopalniaWiedzy.pl napisał:

gęste wody stają się lżejsze

 

4 godziny temu, Przemek Kobel napisał:

Jedyny sposób na to, żeby "gęstsze" stawało się "lżejsze"

Dostrzegam tu albo brak zrozumienia czytanego tekstu, albo słabą próbę manipulacji.

Najpierw dowaliłeś twierdzeniu powyżej, a potem jak cię @3grosze sponiewierał, krytykujesz ... inne twierdzenie niż to, które padło w artykule.

"gęste" <> "gęstsze"

Gęste to nie jakaś jedna konkretna wartość, tylko pewien zakres. Sposób żeby "gęste" (nie "gęstsze") stało się lżejsze - to spowodowanie, żeby było odrobinę mniej gęste :) Ale dalej w zakresie który możemy nazywać "gęste".

Edited by Jarkus

Share this post


Link to post
Share on other sites

Tak to jest, kiedy prawie nikt nie złapał, na czym polegał żart. Co więcej, zupełnie nikt nie zwrócił uwagi, gdzie jest  błąd w całym tym rozumwaniu. Ale co tam, czekam na następne, ehm, "poniewieranie".

Share this post


Link to post
Share on other sites

Zamiast przyznać się do potknięcia (upały ;)), to brniesz w zaparte.

Ten post:

5 godzin temu, Przemek Kobel napisał:

https://pl.wikipedia.org/wiki/Gęstość

Okej, dopiszę krótko, bo teraz nikomu nie chce się czytać. Jedyny sposób na to, żeby "gęstsze" stawało się "lżejsze" to taki, żeby przestało być "gęstsze". Albo antygrawitacja...

Już jasne? Myśleć...

który koliduje logicznie z Up  i jawna kpina z klimatologów, świadczy o żałosnej  próbie wybiegu.

ed.ewentualnie pozostaje Ci konieczność dostosowania (obniżenia;))  poziomu humoru.

Edited by 3grosze

Share this post


Link to post
Share on other sites

Dotyczy to również kpiny:

6 godzin temu, Przemek Kobel napisał:

No proszę - można pomyśleć, że ci eko-klimatolodzy to banda hochsztaplerów, a oni dali światu antygrawitację.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zmiany klimaty spowodowały, że cyklony tropikalne docierające na ląd wolniej słabną, przez co dalej docierają i powodują większe zniszczenia, czytamy na łamach najnowszego wydania Nature. Naukowcy z The Okinawa Institute of Science and Technology (OIST) Graduate University dowiedli, że cyklony, które tworzą się nad gorącymi wodami oceanicznymi, niosą obecnie więcej wilgoci, przez co po dotarciu na ląd dłużej się utrzymują. To sugeruje, że w przyszłości mogą utrzymywać się jeszcze dłużej i obszarom, do których wcześniej nie docierały.
      To bardzo ważne spostrzeżenie, które powinno być brane pod uwagę przy podejmowaniu decyzji dotyczących radzenia sobie ze skutkami globalnego ocieplenia, mówi jeden z autorów badań, profesor Pinaki Chakraborty, dyrektor Jednostki Mechaniki Płynów na OIST. Wiemy, że miejscowości przybrzeżne muszą przygotować się na bardziej intensywne huragany. Okazuje się, że na ich nadejście muszą być też gotowe miejscowości położone w głębi lądu, które mogą nie mieć odpowiedniej infrastruktury, by sobie z tym radzić, a ich mieszkańcy mogą nie mieć doświadczenia z takimi zjawiskami, dodaje uczony.
      Naukowcom z Okinawy udało się wykazać bezpośredni związek pomiędzy ocieplającym się klimatem, a tymi cyklonami, które docierają na ląd. Na potrzeby swoich badań naukowcy przeanalizowali huragany, które w ostatnim półwieczu uformowały się nad północnym Atlantykiem i dotarły na ląd. Okazało się, że obecnie w ciągu pierwszej doby po uderzeniu w ląd cyklony słabną dwukrotnie wolniej niż przed 50 laty. Gdy przyjrzeliśmy się danym jasno było widać, że w kolejnych latach cyklony słabną coraz wolniej. Nie był to jednak proces ciągły. Zmiany w poszczególnych latach odpowiadały zmianom temperatury powierzchni wód oceanicznych, mówi doktorant Lin Li, główy autor badań.
      Naukowcy przetestowali swoje spostrzeżenia za pomocą symulacji komputerowych czterech różnych cyklonów, które przeprowadzono z różnymi danymi dotyczącymi temperatury powierzchni oceanu. Gdy w symulacji huragan osiągnął kategorię 4, naukowcy symulowali jego nadejście nad ląd, odcinając go od źródła wilgoci od spodu.
      Cyklony tropikalne to silniki cieplne, jak np. silnik w samochodzie. W silniku samochodowym spalane jest paliwo i uzyskana energia cieplna zamieniana jest w pracę mechaniczną. W cyklonach wilgoć z powierzchni oceanu jest paliwem, które intensyfikuje i podtrzymuje siłę huraganu, a energia cieplna z wody jest zamieniana w potężne wiatry. W momencie, gdy huragan dotrze na ląd, dostawy paliwa zostają przerwane. Bez paliwa samochód zaczyna zwalniać, a huragan, bez źródła wilgoci, traci na sile, wyjaśnia Li.
      Naukowcy zauważyli, że nawet gdy nad ląd docierają cyklony o tej samej sile, to ten, który uformował się nad cieplejszymi wodami, wolniej słabnie. Symulacje te udowodniły, że wyciągnęliśmy prawidłowe wnioski z naszych analiz. A wnioski te mówią, że cieplejsze oceany wpływają na tempo słabnięcia huraganu, nawet po odcięciu połączenia z wodami oceanicznymi. Pytanie brzmi, dlaczego tak się dzieje, mówi Chakraborty.
      Przeprowadzili więc dodatkowe symulacje i wykazali, że odpowiedzią na to pytanie jest wilgotność. Nawet gdy cyklon dociera na ląd, zamienia się w huragan i nie ma łączności z oceanem, powietrze wciąż zawiera sporo wilgoci. Z czasem wilgoć tę traci i wiatry słabną. Huragany, które powstają nad cieplejszymi wodami oceanicznymi, mogą zawierać więcej wilgoci, która podtrzymuje je przez dłuższy czas i nie pozwala im szybko osłabnąć, dodają uczeni.
      Naukowcy zauważają, że konieczna jest zmiana obecnych – zbyt prostych – modeli badania huraganów. Obecne modele nie biorą pod uwagę wilgotności. Rozważają one huragany jako suchy wir powietrza, który jest osłabiany przez tarcie o ląd. Nasza praca pokazuje, że ten model jest niekompletny. Dlatego też modele te nie wykazywał dotychczas oczywistego wpływu ocieplania się klimatu na huragany, mówi Li.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA poinformowała o znalezieniu wody na oświetlonej przez Słońce powierzchni Księżyca. Wodę zauważono za pomocą Stratospheric Observatory for Infrared Astronomy (SOPHIA). Odkrycie sugeruje, że woda może być obecna nie tylko w zimnych, zacienionych miejscach Srebrnego Globu.
      SOFIA, czyli obserwatorium umieszczone na pokładzie samolotu, wykryło molekuły wody (H2O) w Kraterze Claviusa. To jeden z największych księżycowych kraterów widocznych z Ziemi. Znajduje się on na południowej półkuli Księżyca. Już wcześniejsze obserwacje powierzchni satelity Ziemi wskazywały na istnienie tam pewnej formy wodoru, jednak nie pozwalały one na jednoznaczne stwierdzenie, czy mamy do czynienia z wodą, czy też z grupą hydroksylową (-OH).
      Dzięki obserwatorium SOFIA dowiadujemy się, że w Kraterze Claviusa koncentracja wody wynosi od 100 do 412 części na milion. To około 0,35 litra na każdy metr sześcienny księżycowego gruntu.
      Mamy dane wskazujące, że H2O, czyli po prostu woda, może być obecna na oświetlonych częściach Księżyca - mówi Paul Hertz, dyrektor Wydziału Astrofizyki w Dyrektoriacie Misji Naukowych NASA. Teraz wiemy, że woda tam jest. To odkrycie zmienia nasze rozumienie powierzchni Księżyca i każe zadać sobie pytania o obecność zasobów potrzebnych do eksploracji głębszych części kosmosu.
      Wody w Księżycu jest naprawdę mało. Dość wspomnieć, że na Saharze jest jej 100-krotnie więcej. Jej odkrycie w księżycowym gruncie każe też zadać sobie pytanie, w jaki sposób woda jest tworzona i jak jest w stanie przetrwać na niemal pozbawionych atmosfery ciałach niebieskich.
      Woda to bardzo cenny surowiec, którego obecność na Księżycu znakomicie ułatwiłaby eksplorację kosmosu. Jednak w tej chwili nie wiadomo, czy księżycową wodę da się łatwo pozyskać.
      Sukces obserwatorium SOFIA był możliwy dzięki dziesięcioleciom badań. Gdy w 1969 roku astronauci z misji Apollo przywieźli na Ziemię próbki księżycowego gruntu sądzono, że Srebrny Glob jest całkowicie suchy. W ciągu kolejnych dekad znaleziono lód w stale zacienionych kraterach. Kolejne misje naukowe znajdowały też wodór na oświetlonych przez Słońce fragmentach Księżyca, jednak nie udawało się jednoznacznie stwierdzić, czy występuje on w postaci H2O czy -OH.
      Wiedzieliśmy, że mamy do czynienia z pewnym stopniem uwodornienia. Nie wiedzieliśmy jednak, czy jest tam woda, czy bardziej coś, co przypomina środek do czyszczenia rur - mówi Casey Honniball z Univeristy of Hawaii. SOFIA wszystko zmieniła.
      Laboratorium latające na wysokości ponad 13.700 metrów na pokładzie zmodyfikowanego Boeinga 747 wyposażono w 106-calowy teleskop pracujący w podczerwieni. Jako że na tej wysokości teleskop znajduje się nad 99% całej pary wodnej w ziemskiej atmosferze, może uzyskać znacznie wyraźniejszy obraz niż analogiczne teleskopy na powierzchni Ziemi. Teraz SOFIA znalazła specyficzną dla molekuł wody emisję w paśmie 6,1 mikrometra.
      Obecnie nie wiadomo, skąd wzięła się woda na powierzchni Księżyca. Mogły ją tam zanieść mikrometeoryty. Inna możliwość to zaniesienie wodoru przez wiatr słoneczny. Wodór mógł przereagować z minerałami zawierającymi tlen, tworząc grupę hydroksylową. Następnie promieniowanie pochodzące z bombardowania Księżyca mikrometeorytami mogło zamienić grupę hydroksylową w wodę.
      Nie wiadomo też, jak to się stało, że woda na Księżycu wciąż się utrzymuje. Może być uwięziona w strukturach przypominających korale, które powstały w wyniku działania wysokich temperatur spowodowanych uderzeniami mikrometeorytów. W takim wypadku dość trudno byłoby ją pozyskać. Woda może być też uwięziona pomiędzy ziarnami księżycowego gruntu i chroniona w ten sposób przed odparowaniem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dawna słyszymy teorię, że w przeszłości Ziemia była sucha, a wodę przyniosły z czasem bombardujące ją komety i asteroidy. Tymczasem badania opublikowane właśnie na łamach Science sugerują, że woda mogła istnieć na naszej planecie od zarania jej dziejów.
      Naukowcy z Centre de Recherches Pétrographiques et Géochimiques we Francji odkryli, że grupa kamiennych meteorytów o nazwie chondryty enstatytowe, zawiera na tyle dużo wodoru, by dostarczyć na Ziemię co najmniej trzykrotnie więcej wody niż jej zawartość w ziemskich oceanach. Chondryty enstatytowe mają skład taki, jak obiekty z wewnętrznych części Układu Słonecznego, zatem taki, z jakiego powstała Ziemia.
      Nasze odkrycie pokazuje, że materiał, z jakiego powstała Ziemia mógł w znacznym stopniu dostarczyć jej wodę. Materiały zawierające wodór były obecne w wewnętrznych częściach Układu Słonecznego w czasie, gdy formowały się planety skaliste. Nawet jeśli temperatura była wówczas zbyt wysoka, by woda występowała w stanie ciekłym, mówi główny autor badań, Laurette Piani.
      Najnowsze odkrycie to spore zaskoczenie, gdyż zawsze sądzono, że materiał, z którego powstała Ziemia, był suchy. Pochodził bowiem z wewnętrznych obszarów formującego się Układu Słonecznego, gdzie temperatury nie pozwalały na kondensację wody.
      Chondryty enstatytowe pokazują, że woda nie musiała dotrzeć na naszą planetę z krańców Układu. Są rzadkie, stanowią jedynie 2% meteorytów znajdowanych na Ziemi. Jednak ich podobny do Ziemi skład izotopowy wskazuje, że jest z takiego właśnie materiału powstała planeta. Mają bowiem podobne izotopy tlenu, tytanu, wapnia, wodoru i azotu co Ziemia. Jeśli chondryty enstatynowe tworzyły Ziemię – z ich skład izotopowy na to wskazuje – to oznacza, że miały one w sobie tyle wody, by wyjaśnić jej pochodzenie na naszej planecie. To niesamowite, ekscytuje się współautor badań, Lionel Vacher.
      Badania wykazały też, że znaczna część azotu obecnego w ziemskiej atmosferze może pochodzi z chondrytów enstatynowych. Mamy do dyspozycji niewiele chondrytów estatynowych, które nie zostały zmienione przez asteroidę, której były częścią, ani przez Ziemię. Bardzo ostrożnie dobraliśmy chondryty do naszych badań i zastosowaliśmy specjalne techniki analityczne, by upewnić się, że to, co znajdziemy, nie pochodzi z Ziemi, mówi uczony. Badania wody w meteorytach zostały przeprowadzone za pomocą spektrometrii mas i spektrometrii mas jonów wtórnych.
      Założono, że chondryty enstatynowe uformowały się blisko Słońca. Były więc powszechnie uznawane za suche i prawdopodobnie z tego powodu nie przeprowadzono ich dokładnych badań pod kątem obecności wodoru, mówi Piani.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Prywatna chińska firma Origin Space ma zamiar wystrzelić swojego pierwszego „kosmicznego robota wydobywczego”. NEO-1, który ma wystartować w listopadzie, to niewielki 30-kilogramowy satelita, który ma wejść na orbitę heliosynchroniczną na wysokości 500 kilometrów. Urządzenie nie będzie pozyskiwało żadnych surowców, posłuży do testowania technologii.
      Naszym celem jest sprawdzenie różnych elementów, takich jak manewry na orbicie, symulowanie przechwytywania niewielkich obiektów, inteligentna identyfikacja i kontrola, mówi współzałożyciel Origin Space, Yu Tianhong.
      Origin Space powstała w 2017 roku i opisuje siebie jako pierwszą chińską firmę skoncentrowaną na pozyskiwaniu zasobów w przestrzeni kosmicznej. Gdy Pekin w 2014 roku otworzył swój przemysł kosmiczny na współpracę z przedsiębiorstwami prywatnymi, zaczęły powstawać firmy zainteresowane działaniami poza Ziemią. Szczególnie interesujące jest wydobywanie surowców, gdyż szacuje się, że przemysł górniczy wykorzystujący asteroidy może być warty biliony dolarów. Nic więc dziwnego, że przedsiębiorstwa zainteresowane kosmicznych górnictwem, angażują się w rozwój rakiet i małych satelitów.
      Origin Space ma ambitne plany. Już podpisało umowę z państwową DHF Satellite, w ramach której ma zostać przygotowana misja Yuanwang-1, która w 2021 roku ma wynieść na orbitę teleskop zaprojektowany do obserwowania asteroid bliskich Ziemi. Celem prac będzie tutaj zidentyfikowanie potencjalnych celów do rozpoczęcia prac wydobywczych. Z kolei pod koniec przyszłego roku lub na początku roku 2022 ma wystartować misja NEO-2, której celem będzie Księżyc. Yu Tianhong przyznaje, że plan tej misji nie jest jeszcze gotowy, jednak nie wyklucza ewentualnego lądowania na Srebrnym Globie.
      Wydobywanie pozaziemskich surowców stało się ponownie przedmiotem gorącej debaty po tym, jak w ubiegłym tygodniu administrator NASA Jim Bridenstine zachęcał prywatne firmy, by przywoziły próbki księżycowych skał i gruntu obiecując, że NASA je odkupi.
      Jednak przed kosmicznym górnictwem wciąż wiele przeszkód. Od kwestii związanych z odpowiednimi technologiami, poprzez całą logistykę prac górniczych i transportu, aż po odpowiedź na banalne pytanie kto – oprócz NASA – byłby skłonny kupować te surowce.
      Wiele słyszeliśmy o wodzie na Księżycu, mówi Brian Weeden, jeden z dyrektorów Secure World Foundation. Jednak gdy porozmawia się z jakimkolwiek naukowcem zajmującym się tym tematem, okazuje się, że nie wiadomo, jaki skład chemiczny ma ta woda ani z jakimi trudnościami będzie wiązało się jej pozyskanie oraz przygotowanie z niej użytecznego produktu.
      Takie same, a nawet większe, problemy dotyczą prac górniczych na asteroidach. Na Ziemi mamy wielkie kopalnie, potężne maszyny, fabryki i huty, które przetwarzają minerały na użyteczne produkty. Jak wiele z tych rzeczy będziemy potrzebowali w kosmosie i jak je tam wybudujemy?, stwierdza Weeden. Obecnie jedynymi potencjalnymi klientami są państwowe agendy kosmiczne, które mają plany związane z Księżycem. One mogą być zainteresowane księżycowymi regolitami do wznoszenia konstrukcji i wodą, do wytwarzania paliwa i celów spożywczych. Jednak poza skromną ubiegłotygodniową deklaracją NASA nie obserwujemy żadnego zainteresowania za strony rządów kupowaniem takich materiałów, dodaje.
      Chińczycy z Origin Space nie są pierwszymi, którzy próbują szczęścia na nieistniejącym rynku kosmicznego górnictwa. W 2009 roku powstała amerykańska firma Planetary Resources, która doświadczyła problemów z finansowaniem i została przejęta przez ConsenSys. Z kolei w styczniu 2019 roku również amerykańska Deep Space Industries też zmieniła właściciela i obecnie zajmuje się rozwojem małych satelitów. Więcej szczęścia mają na razie Japończycy z ispace. Udało im się pozyskać 28 milionów dolarów i budują pierwszą serię księżycowych lądowników.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lodowce szelfowe mogą zniknąć błyskawicznie, czasami wystarczą minuty lub godziny, by się rozpadły. Proces ten jest napędzany przez wodę, która wdziera się w pęknięcia lodowca. Wiele z lodowców szelfowych znajduje się bezpośrednio przy wybrzeżach Antarktyki i stanowią fizyczną barierę zapobiegającą spływaniu ludowców z lądu do oceanu. Autorzy najnowszych badań, opublikowanych właśnie w Nature, twierdzą, że od 50 do 70 procent antarktycznych lodowców szelfowych jest zagrożonych rozpadem z powodu globalnego ocieplenia.
      Odkryliśmy, że tempo topnienia jest ważne, ale równie ważne jest to, gdzie to topnienie zachodzi mówi główna autorka najnowszych badań, Ching-Yao Lai z Columbia University. Największą zagadką jest to, kiedy lodowiec może się rozpaść, dodaje Christine Dow z kanadyjskiego University of Waterloo, która nie była zaangażowana w najnowsze badania.
      Niektóre z lodowców szelfowych pływają na otwartych wodach i nie mają wpływu na to, co dzieje się z lodowcami na lądzie.
      Jednak lodowce szelfowe znajdujące się np. w zatokach stanowią fizyczną barierę, która spowalnia spływanie do oceanu lodowców z lądu. W takim przypadku na lodowce szelfowe działają potężne siły. Z jednej strony są one poddawane naciskowi ze strony lodu spływającego z lądu, z drugiej strony napierają na ląd, z trzeciej zaś są rozciągane, gdy przemieszczają się na wodzie. W wyniku tych procesów na lodowcach szelfowych pojawiają się liczne pęknięcia. Jeśli nad taki lodowiec napłynie ciepłe powietrze i lodowiec zacznie się topić, pojawi się woda, która będzie wdzierała się w pęknięcia. Może ona błyskawicznie doprowadzić do rozpadu lodowca szelfowego. A w takim wypadku znika bariera między oceanem a lodowcem na lądzie, więc lodowiec może przyspieszyć spływanie do oceanu.
      Naukowcy spekulują, że ofiarą takiego procesu pękania i wdzierania się wody padł lodowiec szelfowy Larsen B, który w 2002 roku w ciągu zaledwie kilku tygodni stracił 3250 km2 powierzchni.
      Lai i jej zespół chcieli wiedzieć, które z lodowców szelfowych są najbardziej narażone na rozpad. Opracowali więc model maszynowego uczenia się, który był trenowany na zdjęciach lodowców z przeszłości. Celem treningu było nauczenie algorytmu rozpoznawania cech charakterystycznych prowadzących do rozpadu lodowców. Algorytm uczono na podstawie zdjęć satelitarnych lodowców szelfowych Larsen C i Jerzego VI. Następnie algorytm zaimplementowano do zdjęć całej Antarktyki.
      Na tej podstawie zidentyfikowali te pęknięcia, które – po uwzględnieniu nacisku wywieranego przez masy lodu oraz ruchy lodowca na wodzie – z największym prawdopodobieństwem będą się powiększały. Teraz uczonych czeka odpowiedź na pytanie, kiedy może dojść do rozpadu poszczególnych lodowców szelfowych. W tym celu naukowcy będą musieli połączyć swój model z modelami klimatycznymi oraz modelami opisującym spływanie lodowców z lądu. Na razie grupa Lai nie jest w stanie zakreślić ram czasowych, w których może dojść do masowego rozpadania się lodowców szelfowych. Jednak inna grupa naukowa już w 2015 roku stwierdziła, że stanie się to w perspektywie najbliższych dekad.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...