Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Pierwsze przestępstwo w kosmosie? NASA prowadzi śledztwo

Recommended Posts

Biuro Inspektora Generalnego NASA prowadzi śledztwo w sprawie... pierwszego domniemanego przestępstwa popełnionego w przestrzeni kosmicznej. Summer Worden żona astronautki Anne McClain oskarżyła ją, że podczas pobytu na Międzynarodowej Stacji Kosmicznej zaglądała ona na konto bankowe Worden. Obie panie wzięły ślub w 2014 roku, a od roku 2018 są w separacji i toczą spór m.in. o opiekę nad synem Worden.

McClain przyznaje, że zaglądała na konto, ale tylko po to, by upewnić się, że są na nim wystarczające środki na opiekę nad dzieckiem. Zresztą, jak mówi, wielokrotnie korzystając z tego samego hasła, sprawdzała stan konta będąc na Ziemi.

Worden mówi, że nabrała podejrzeń, gdy zauważyła, iż McClain zna szczegóły na temat jej wydatków. Poprosiła wówczas bank o dane na temat komputerów, z których logowano się do konta i odkryła, że właścicielem jednego z nich jest NASA. Złożyła więc zawiadomienie do Federalnej Komisji Handlu, donosząc o nieupoważnionym dostępie do prywatnych informacji finansowych oraz kradzieży tożsamości. McClain nie zgadza się z tymi zarzutami.

Na podstawie International Space Station Intergovernmental Agreement, traktatu podpisanego w styczniu 1998 roku przez 15 państw zaangażowanych w budowę Stacji, ustalono, że każdy partner utrzymuje jurysdykcję i kontrolę nad należącymi doń elementami stacji oraz personelem odpowiedniej narodowości. Jeśli zatem pani McClain, która jest obywatelką USA, popełniła przestępstwo wykorzystując do tego celu komputer należący do NASA, to będzie za nie sądzona przez amerykański wymiar sprawiedliwości. Sprawę ułatwia tutaj fakt, że również i domniemana ofiara jest obywatelką USA.

Co jednak, gdyby astronauta jednego kraju popełnił przestępstwo wobec obywatela innego kraju lub celowo uszkodzi element stacji należący do innego kraju? Również i taką sytuację przewidziano we wspomnianym traktacie. Stanowi on, że przestępca będzie podlegał jurysdykcji kraju, którego jest obywatelem. Jednak w takim przypadku najpierw odbywają się konsultacje pomiędzy oboma krajami – krajem sprawcy i krajem poszkodowanym. Następnie w ciągu 90 dni od tych konsultacji kraj poszkodowany ma prawo postawić zarzuty na gruncie własnego prawa sprawcy przestępstwa o ile albo zgodzi się na to kraj sprawcy, albo też kraj sprawcy nie da krajowi poszkodowanemu gwarancji, iż złoży do własnych odpowiednich organów dokumenty pozwalające na ściganie sprawcy.

Sprawa przestępstw popełnionych na Międzynarodowej Stacji Kosmicznej jest więc uregulowana odpowiednią umową międzynarodową. Znacznie trudniejsze mogą okazać się tego typu sprawy w momencie rozwoju turystyki kosmicznej. W tej chwili nie wiadomo, czyjej jurysdykcji powinien podlegać np. australijski turysta, który na pokładzie amerykańskiego pojazdu kosmicznego popełni przestępstwo przeciwko turyście japońskiemu. Niewykluczone, że w takim wypadku przestępca sądzony byłby na gruncie prawa państwa, pod którego jurysdykcją znajduje się pojazd kosmiczny. Jednak sprawy mogłyby się skomplikować, gdyby kraj sprawcy lub poszkodowanego oświadczył, że chce prowadzić proces.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Doskonały przykład na to, o czym już wspomniałem. Idiotyczne wyrzucanie DUŻEJ kasy. Człowiek to najsłabsze ogniwo. ZAWSZE i wszędzie. Zwłaszcza poza Ziemią.
P.S. Gdyby tak żona zgwałciła żonę po nieautoryzowanym wtargnięciu do modułu kraju, który nie akceptuje związków jednopłciowych? Wojna wisi w powietrzu; właściwie nawet ponad powietrzem, ;)

Share this post


Link to post
Share on other sites
W dniu 29.08.2019 o 15:59, Przemek Kobel napisał:

(google search)

linka byś dał, a nie jakieś udawanie :)

 

W dniu 29.08.2019 o 16:35, Astro napisał:

Człowiek to najsłabsze ogniwo. ZAWSZE i wszędzie.

No patrz, a w temacie o robotach pilotach mówiłeś, że nie ;)

Share this post


Link to post
Share on other sites

Miałem na myśli, że ten "pośredni" robot do debilizm. Ufałbym bardziej pełnej automatyce. :)

Share this post


Link to post
Share on other sites
3 godziny temu, Astro napisał:

Miałem na myśli, że ten "pośredni" robot do debilizm. Ufałbym bardziej pełnej automatyce.

Wiem, co miałeś na myśli, ale ośmielam się nie zgodzić, bo to ma sens ekonomiczny, tylko tyle i aż tyle.

3 godziny temu, Przemek Kobel napisał:

Mała uwaga - politycznie poprawni chronią tę firmę, a niepoprawni - atakują.

Hmm, generalnie jak w artykule, można "do the math", i faktycznie mają dwie porażki za sobą, ale czy to świadczy tylko o parytetach? Trudno powiedzieć w tym przypadku, zwłaszcza, że stress testy przeszło, ale najważniejsze imho jest " it was reportedly placed using accelerated construction techniques developed by FIU. "

Równie dobrze ta technika mogła być do bani, nowa, nieznana, źle policzona na etapie projektu. To ich jakby nie usprawiedliwia, ale nie można też implikować od razu, że to dlatego, że to kobiety. Generalnie jestem "zaciekłym" przeciwnikiem parytetów (to też krzywdzi te kobiety, które jakoś dają/dawały sobie radę bez parytetów), ale tu na razie bym się wstrzymał z generalizowaniem na wszystkie kobiety-inżynierów. Dodatkowo, może tylko szefowa jest słabym inżynierem, a dodatkowo słabym szefem i zatrudniła sieroty (bo i sama nie potrafiła/nie chciała zweryfikować ich umiejętności), a jak wiadomo ryba psuje się od głowy.

Co wydaje się pewne, Ona specjalnie zatrudnia kobniety, "żeby udowodnić", ale to nie implikuje porażek.

Share this post


Link to post
Share on other sites
W dniu 3.09.2019 o 00:04, radar napisał:

bo to ma sens ekonomiczny, tylko tyle i aż tyle

Zobaczymy, w końcu z 737 MAX miało być tak pięknie...

Na razie jeszcze nie ma sensu ekonomicznego, a jedynie życzeniowy.

Edited by Astro

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Amerykańskim fizykom udało się uzyskać kondensat Bosego-Einsteina na pokładzie Międzynarodowej Stacji Kosmicznej. Co prawda tamtejsze laboratorium nie osiąga jeszcze tak niskich temperatur, jak instalacje na Ziemi, jednak w przyszłości ISS może stać się idealnym miejscem do testowania kwantowo-mechanicznych grawimetrów i prowadzenia najbardziej precyzyjnych testów zasady równoważności.
      Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę.
      Kondensat uzyskuje się zamykając gaz złożony z atomów bozonowych w pułapce magnetycznej i chłodząc go za pomocą lasera. Powstaje kondensat, który jest uwalniany z pułapki, by mógł zachowywać się w sposób naturalny i badany. Eksperymenty takie są jednak poważnie zakłócane przez grawitację. Powoduje ona, że po uwolnieniu z pułapki atomy błyskawicznie opadają i uderzają o podłoże. Dlatego też naukowcy próbują różnych rozwiązań – polegających na zapewnieniu atomom jak najdłuższego swobodnego spadku – by wydłużyć czas pomiędzy uzyskaniem kondensatu a opadnięciem atomów i kontaktem z podłożem. W tym celu kondensaty zrzuca się z wież czy umieszcza na pokładzie samolotów czy rakiet w locie parabolicznym.
      Najlepszym miejscem do tego typu eksperymentów byłyby więc warunki jak najmniejszej grawitacji. To nie tylko wydłużyłoby czas badania kondensatu, ale pozwoliłoby stopniowo osłabiać pola magnetyczne pułapki, dzięki czemu atomy powoli by się rozprzestrzeniały i chłodziły do jeszcze niższych temperatur.
      Nowe badania zostały przeprowadzone za pomocą Cold Atom Lab (CAL). To laboratorium zostało wyniesione na ISS w 2018 roku i znajduje się na pokładzie amerykańskiego modułu Destiny. Zbudowane kosztem 70 milionów dolarów zdalnie sterowane urządzenie ma objętość zaledwie 0,4 m3, jednak zawiera lasery, magnesy i inne urządzenia potrzebne do uwięzienia, schłodzenia i kontrolowania gazu. Atomy są początkowo przechowywane w centrum komory próżniowej, później transportowane są do "atomowego chipa", na szczycie komory. Układ ten wykorzystuje fale radiowe do odrzucenia cieplejszych atomów, pozostawiając tylko te, których temperatura wynosi mniej niż miliardowa część kelwina.
      Robert Thompson, David Aveline i ich koledzy z Jet Propulsion Laboratory wykorzystali CAL do uzyskania kondensatu Bosego-Einsteina z atomów rubidu-87. Kondensat był obecny przez 1,18 sekundy i zauważono w nim wiele odmiennych charakterystyk od analogicznego kondensatu uzyskiwanego na Ziemi. Najważniejszym spostrzeżeniem było stwierdzenie, że niektóre z atomów rubidu pozostały w oddaleniui odl kondensatu i utworzyły wokół niego halo. Atomy te były utrzymywane za pomocą efektu Zeemana. W warunkach ziemskich opadają one na dno pułapki.
      Mimo, że CAL to niewielkie zdalnie sterowane urządzenie, to uzyskane w nim kondensaty już teraz dorównują tym najlepszym kondensatom uzyskiwanym w ziemskich warunkach. Jak zauważa Bryntle Barrett z francuskiego Institut d’Optique d’Aquitaine, olbrzymią zaletą eksperymentów na orbicie jest fakt, że potencjalnie można tam zapewnić całe lata swobodnego spadku, co pozwoli naukowcom na ciągłe udoskonalanie parametrów eksperymentów. Dlatego też uczony uważa, że uzyskanie kondensatu Bosego-Einsteina na ISS to znaczący krok w kierunku prowadzenia w przestrzeni kosmicznej wysoce precyzyjnych eksperymentów z kwantowymi gazami.
      Specjaliści już mówią o kilku różnych rodzajach takich eksperymentów. Jednak najbardziej obiecującymi z nich będą badania nad atomowymi interferometrami. Takie interferometry pozwoliłyby nie tylko na badanie zjawiska swobodnego spadku, ale posłużyłyby do niezwykle precyzyjnego monitorowania środowiska czy poszukiwania minerałów z przestrzeni kosmicznej.
      Barrett mówi, że już teraz w środowisku naukowym pojawiły się propozycje wystrzelenia dedykowanego satelity, który wykorzystywałby kondensat Bosego-Eisteina do badania zjawiska grawitacji. Taki satelita byłby wolny od wibracji obecnych na Międzynarodowej Stacji Kosmicznej. W tej dekadzie będziemy świadkami realizacji części z tych ekscytujących propozycji, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Za miesiąc, 20 lipca, wystartuje kolejna misja na Marsa. Tym razem NASA chce umieścić na powierzchni Czerwonej Planety łazik Perseverance. Zadaniem pojazdu będzie poszukiwanie śladów życia w Kraterze Jezero oraz przetestowanie kluczowych technologii, które zostaną wykorzystane podczas przyszłych robotycznych oraz załogowych misji marsjańskich. Jednocześnie Perseverance pobierze próbki gruntu i skał, które zostaną przywiezione na Ziemię w ramach kolejnych misji.
      Pięćdziesiąt jeden lat temu NASA kończyła przygotowania do pierwszej załogowej misji na Księżyc. Obecnie stoimy w przededniu kolejnego ważnego momentu eksploracji kosmosu: zebrania próbek na Marsie, stwierdził szef NASA, Jim Bridenstine.
      Misja Mars 2020 została zaplanowana w grudniu 2012 roku. Od początku zakładano, że wystartuje ona latem 2020 roku. Na razie wszystko wskazuje na to, że misja odbędzie się zgodnie z planem. Biorąc pod uwagę pozycje Ziemi i Marsa, okienko startowe do misji na Czerwoną Planetę otwiera się co 26 miesięcy. Jeśli Perseverance nie wystartuje w planowanym terminie, trzeba będzie czekać do września 2022 roku. Takie opóźnienie poważnie zaburzyłoby realizację długoterminowych planów realizowanych przez NASA w ramach Mars Exploration Program.
      Każda z marsjańskich misji obarczona jest sporym ryzykiem. W przypadku Mars 2020 największym problemem jest posadowienie łazika Perseverance na powierzchni. Jest to bowiem najcięższy ładunek, jaki kiedykolwiek próbowano umieścić na Marsie. Inżynierowie NASA musieli opracować nowe procedury testowe, by sprawdzić, czy zaprojektowane przez nich spadochrony spełnią stawiane przed nimi zadanie. Innym poważnym wyzwaniem technicznym było stworzenie i przetestowanie Sample Caching System, najbardziej złożonego i czystego mechanizmu zbierania próbek kiedykolwiek wysłanego w kosmos.
      Jako, że ostateczne przygotowanie do misji Mars 2020 przypadły na szczególny moment, pandemię koronawirusa, zespół  postanowił uhonorować walczących z nią medyków medyków. Do obudowy łazika przymocowano specjalną plakietkę. Na aluminiowej płytce o wymiarach 8x13 centymetrów widzimy Ziemię wspartą na eskulapie, symbolu medycyny. Zaznaczono też trajektorię lotu misji Mars 2020 na Marsa. Chcieliśmy uhonorować tych, którzy postawili dobro innych nad swoim dobrem osobistym. Mamy nadzieję, że gdy przyszłe generacje polecą na Marsa i napotkają na nasz łazik, plakietka przypomni im, że w 2020 roku na Ziemi byli tacy ludzie, mówi Matt Wallace, zastepca dyrektora projektu Perseverance.
      Nowy marsjański łazik poszuka śladów życia, będzie badał klimat i geologię Marsa, przygotuje grunt pod przyszłe misje i zbierze oraz przechowa próbki gruntu. Już teraz NASA i Europejska Agencja Kosmiczna zastanawiają się nad przyszłymi misjami, które odbiorą te próbki od Perseverance i przywiozą je na Ziemię do dalszej analizy.
      Okienko startowe dla misji Mars 2020 będzie otwarte od 20 lipca do 11 sierpnia. Niezależnie od tego, kiedy misja wystartuje, lądowanie przewidziane jest na 18 lutego 2021 roku. Wyznaczenie ścisłej daty lądowania pozwoli lepiej zrozumieć warunki panujące w miejscu lądowania oraz odpowiednio dostosować pracę satelitów krążących na orbicie Marsa, których zadaniem będzie pomoc w komunikacji pomiędzy lądującą misją Mars 2020 a Ziemią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W elektronice konsumenckiej kropki kwantowe wykorzystywane są np. w telewizorach, gdzie znacząco poprawiają odwzorowanie kolorów. Używa się ich, gdy telewizory LCD wymagają tylnego podświetlenia. Standardowo do podświetlenia używa się białych LED-ów, a kolory uzyskuje dzięki filtrom. Zanim pojawiły się kropki kwantowe znaczna część światła nie docierała do ekranu, była blokowana przez filtry. Zastosowanie kropek kwantowych w LCD wszystko zmieniło.
      Obecnie telewizory QD LCD wykorzystują niebieskie LED-y jako źródło światła, a kropki kwantowe, dzięki efektom kwantowym, zmieniają to światło w czerwone i zielone. Do filtrów docierają wówczas wyłącznie trzy składowe kolorów – czerwony, zielony i niebieski – a nie całe spektrum światła białego, to znacznie mniej światła jest blokowane i marnowane dzięki czemu otrzymujemy jaśniejsze, bardziej nasycone i lepiej odwzorowane kolory.
      Okazuje się, że ta sama technologia może być przydatna przy uprawie roślin. Wykazują one bowiem preferencje odnośnie kolorów światła. Wiemy na przykład, że nie absorbują zbyt dużo światła zielonego. Odbijają je, dlatego wydają się zielone. Niedawne badania wykazały, że różne rośliny są dostosowane do różnych długości fali światła. W Holandii niektórzy plantatorzy już od dłuższego czasu eksperymentują i uprawiają pomidory pod światłem w kolorze fuksji, róże ponoć lubią bardziej białe światło, a papryka żółte.
      W 2016 roku Hunter McDaniel i jego koledzy z UbiQD zaczęli zastanawiać się nad wykorzystaniem kropek kwantowych w hodowli roślin. Biorąc bowiem pod uwagę fakt, że kropki kwantowe pozwalają na bardzo precyzyjne dobranie długości fali światła oraz fakt, że światło nie jest blokowane, więc i nie mamy tutaj dużych strat energii, takie rozwiązanie mogłoby się sprawdzić.
      Wcześniej McDaniel był badaczem w Los Alamos National Laboratory. Pracował tam właśnie nad kropkami kwantowymi i tam zdał sobie sprawę, że toksyczny kadm, wykorzystywany w kropkach, można zastąpić siarczkiem miedziowo-indowym. W 2014 roku założył UbiQD by skomercjalizować opracowaną przez siebie technologie.
      Na początku naukowiec wyobrażał sobie kilka pól zastosowania dla nowych kropek kwantowych. I wtedy wpadliśmy na pomysł wykorzystania ich w rolnictwie. Ten rynek ma gigantyczny potencjał. Może on wchłonąć nawet ponad miliard metrów kwadratowych powierzchni kropek kwantowych rocznie.
      Przedstawiciele UbiQD postanowili produkować długie płachty zawierające kropki kwantowe, które byłyby podwieszane pod dachami szklarni i zmieniałyby spektrum wpadającego światła słonecznego. Pierwsze takie płachty dawały światło pomarańczowe o długości fali około 600 nm. Badacze testowali je na badawczych uprawach sałaty na University of Arizona. Z czasem zaczęto prowadzić testy na większą skalę. Inne płachty, dające inne kolory światła, sprawdzano w Nowym Meksyku na pomidorach, ogórkach i ziołach, w Holandii badano wpływ światła z kropek kwantowych na uprawy truskawek i pomidorów, w Kolorado do testów wybrano konopie przemysłowe, w Kalifornii i Oregonie konopie indyjskie, a w Kanadzie ogórki i pomidory. UbiQD nawiązała tez współpracę w firmą Nanosys, która od 2013 roku produkuje kropki kwantowe w ilościach przemysłowych na potrzeby producentów telewizorów.
      Niedawno UbiQD rozpoczęła komercyjną sprzedaż swoich płacht z kropkami kwantowymi. Mogą je kupić producenci z Azji, Europy i USA. Obecnie na skalę przemysłową produkowane są jedynie płachty dające światło pomarańczowe, jednak trwają badania nad innymi kolorami.
      UbiQD otrzymała też kilka grantów od NASA. Za te pieniądze ma stworzyć produkt do użycia w warunkach kosmicznych. Tego typu płachta powinna blokować szkodliwe dla roślin promieniowanie ultrafioletowe i zamieniać je w światło o takiej długości, by rośliny mogły przeprowadzać fotosyntezę.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr Kathryn Dwyer Sullivan, amerykańska geolog i była astronautka NASA, została pierwszą kobietą, która zeszła na dno Głębi Challengera, czyli najgłębiej położonego miejsca w Rowie Mariańskim. Dokonała tego podczas zeszłego weekendu na pokładzie pojazdu podwodnego DSV Limiting Factor. Jej pilotem był Victor Vescovo. O dokonaniach 68-letniej Sullivan poinformowała EYOS Expeditions, firma koordynująca logistykę misji.
      W 1984 r. Sullivan jako pierwsza Amerykanka wykonała spacer kosmiczny. Sullivan była uczestniczką trzech misji promów kosmicznych. W 1993 r. opuściła NASA i została głównym naukowcem Amerykańskiej Narodowej Służby Oceanicznej i Meteorologicznej (NOAA).
      Dr Sullivan i Victor L. Vescovo, badacz finansujący misję, spędzili u celu swojej podróży ok. 1,5 godziny. Po wykonaniu zdjęć rozpoczęło się ok. 4-godzinne wynurzanie.
      Po powrocie na pokład jednostki macierzystej DSSV Pressure Drop Sullivan i Vescovo zadzwonili na Międzynarodową Stację Kosmiczną (MSK). Dla oceanografa i astronauty w jednej osobie był to niesamowity dzień, doświadczenie zdarzające się tylko raz w życiu; ostatecznie rzadko kiedy podziwia się księżycowy krajobraz Głębi Challengera i wymienia z kolegami z MSK uwagami na temat naszego sprzętu wielokrotnego użytku z przestrzeni kosmicznej i oceanicznej.
      We wpisie na Twitterze Vescovo pogratulował Sullivan zostania pierwszą kobietą na dnie oceanu. Jak podkreślono w relacji prasowej EYOS Expeditions, Sullivan jest pierwszym człowiekiem, który był zarówno w przestrzeni kosmicznej, jak i na pełnej głębokości oceanu.
      Wyprodukowany przez florydzką firmę Triton Submarines Limiting Factor to obecnie jedyny pojazd podwodny, który może dotrzeć do Głębi Challengera.
      Warto przypomnieć, że Vescovo zorganizował ekspedycję Five Deeps, która polegała na osiągnięciu najgłębszych punktów wszystkich ziemskich oceanów. Zaczęła się ona od Atlantyku (grudzień 2018), a zakończyła w sierpniu 2019 r. na Oceanie Arktycznym. W zeszłym roku na przestrzeni 7 dni jego zespół 5-krotnie nurkował w Rowie Mariańskim. Wycieczka Victora z panią doktor jest jego 3. pobytem w Głębi Challengera.
      Sullivan ma wrócić do portu na Guam 15 czerwca.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rozpoczęła się historyczna misja kapsuły załogowej Crew Dragon. Start odbył się zgodnie z planem. Równie udane były poszczególne etapy lotu. Najpierw odrzucony został pierwszy stopień rakiety, który z powodzeniem wylądował na pokładzie oczekującej nań na Atlantyku platformy. Niedługo później doszło do oddzielenia się kapsuły załogowej od drugiego stopni rakiety.
      Do oddzielenia się pierwszego stopnia rakiety doszło 2 minuty 36 sekund po starcie. Osiem sekund później pracę rozpoczął silnik drugiego stopnia. W tym czasie pierwszy stopień opadał w kierunku Ziemi i 8 minut 52 sekundy po starcie na krótko uruchomił silniki hamujące. Pół minuty później zobaczyliśmy, że pierwszy stopień z powodzeniem wylądował na platformie. Wiadomość ta wyraźnie ucieszyła załogę Crew Dragona. W 12. minucie po starcie kapsuła załogowa oddzieliła się od drugiego stopnia rakiety i rozpoczęła samodzielną podróż w kierunku Międzynarodowej Stacji Kosmicznej. Podróż ta potrwa 19 godzin.
      Kolejny ważny etap podróży nastąpił 49 minut i 6 sekund po starcie, gdy po sprawdzeniu silników manewrowych zostały one uruchomione, by dopasować orbitę Dragona do orbity Międzynarodowej Stacji Kosmicznej. Za dziewięć godzin rozpocznie się cała seria manewrów, dzięki którym w ciągu kolejnych 6 godzin Dragon zbliży się do MSK.
      Jutro około godziny 15:02 czasu polskiego kapsuła zbliży się do 400-metrowej strefy bezpieczeństwa wokół Stacji. Aby w nią wlecieć musi uzyskać zgodę z kontroli misji. Jeśli zgoda taka zostanie wydana, około 10 minut później kapsuła podleci do Waypoint Zero znajdującego się 400 metrów pod ISS. Minie kolejnych 25 minut zanim kapsuła znajdzie się w Waypoint 1 w odległości 220 metrów i rozpocznie dopasowywanie swojej pozycji do modułu dokującego stacji. Stanie się to około godziny 15:37 czasu polskiego. Mniej więcej o godzinie 16:13 załoga powinna dostać ostateczną zgodę na dokowanie. Pięć minut później Dragon powinien znaleźć się w Waypoint 2, punkcie znajdującym się zaledwie 20 metrów od stacji. Tam poczeka przez 5 minut. O godzinie 16:28 kapsuła powinna zadokować do Międzynarodowej Stacji Kosmicznej.
      Przeprowadzenie udanego startu oznacza, że po raz pierwszy od 9 lat z terenu USA wystartowała załogowa misja kosmiczna. Oznacza też ponowne odzyskanie przez USA zdolności do samodzielnej organizacji załogowych lotów kosmicznych. To niezwykle ważny moment dla całego przemysłu kosmicznego, gdyż po raz pierwszy w historii prywatna firma wyniosła ludzi w kosmos we własnym pojeździe i przy użyciu własnej rakiety.
      Sukces misji oznacza, że SpaceX uzyska licencję na kosmiczne loty załogowe. To z kolei doda jej wiarygodności i firma Muska będzie mogła liczyć na kolejne zlecenia zarówno ze strony NASA, prywatnego przemysłu kosmicznego i – co bardzo prawdopodobne – agencji kosmicznych innych państw. Przemysł kosmiczny wchodzi w zupełnie nową fazę rozwoju. Tym bardziej, że na przyszły rok zapowiadany jest lot konkurencji SpaceX, czyli kapsuły Starliner firmy Boeing. Zatem od przyszłego roku możemy mieć na rynku dwie prywatne firmy oferujące załogowe loty kosmiczne.
      Najbardziej stracić może na tym rosyjski Roskosmos, który obecnie nie tylko wozi astronautów NASA, ale z jego usług korzystają też inne państwa. NASA z pewnością przestanie korzystać z usług Roskosmosu w takim zakresie jak obecnie, a biorąc pod uwagę fakt, że SpaceX ma zamiar zaoferować swoje usługi znacznie taniej, można spodziewać się, że Roskosmos straci wielu klientów. To zaś powinno wymusić na Rosji zreformowanie swojej agencji kosmicznej.
      Przypominamy, że teraz każdy może spróbować swoich sił na symulatorze dokowania Dragona do ISS.

      « powrót do artykułu
×
×
  • Create New...