Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Odpady plastikowe są wszędzie: na wysypiskach śmieci, w lasach, morzach i oceanach... Naukowcy mają mnóstwo pomysłów na to, jak z nimi walczyć. W ten trend ten wpisuje się też wynalazek z UMK w Toruniu: preparat przyspieszający proces rozkładu plastiku.

Preparat, którego twórczynią jest dr hab. Grażyna Dąbrowska - genetyk z toruńskiego Uniwersytetu Mikołaja Kopernika, może przyspieszyć nawet o 20 proc. rozkład plastikowych materiałów zalegających na wysypiskach śmieci. Zawiera on mikroorganizmy (zwłaszcza grzyby) zdolne do wytwarzania enzymów hydrolitycznych degradujących plastik.

Dr hab. Dąbrowska pracuje w Zakładzie Genetyki na Wydziale Biologii i Ochrony Środowiska UMK, gdzie zajmuje się m.in. genetyką roślin, ich interakcjami z mikroorganizmami oraz biodegradacją tworzyw sztucznych, zanieczyszczających glebę i wody. Ta wiedza pozwoliła jej dobrać składniki preparatu.

Co grzyby mają wspólnego z plastikowymi odpadami? Jak się okazuje, całkiem sporo. Jak tłumaczy badaczka, składniki preparatu mają szczególne właściwości, dzięki którym mogą wejść w reakcję chemiczną z plastikiem. Dzięki temu tworzywa sztuczne tracą swoje właściwości: stają się na przykład mniej rozciągliwe czy bardziej przepuszczalne dla gazów, pary wodnej, tlenu czy dwutlenku węgla - opisuje dr hab. Dąbrowska.

Efekty wynalazku z Torunia można zaobserwować po kilku miesiącach działania. Jak tłumaczy jego twórczyni, działanie preparatu wzmacniają wytwarzane przez grzyby białka, tworzące na powierzchni plastiku (zwłaszcza PET) specyficzną warstwę, ściśle przylegającą do danego tworzywa. Rosnąca grzybnia przylega więc do polimeru, równocześnie wytwarzając enzymy degradujące i zmieniające jego strukturę. Co znacznie zwiększa skuteczność procesu przyspieszania biodegradacji - tłumaczy dr hab. Dąbrowska.

Twórczyni preparatu widzi jego zastosowanie przede wszystkim pod sam koniec cyklu życiowego wysypisk śmieci, w procesie rekultywacji. Przez wiele lat w Polsce nie była prowadzona poprawna selekcja odpadów i właściwie większość tworzyw sztucznych znajduje się w tym momencie na składowiskach odpadów. Ich ilości są olbrzymie - dlatego tak pomocne byłoby zmniejszenie ich gabarytów, przyspieszenie procesu ich rozkładu na samym początku procesu odzyskiwania terenu składowiska - opowiada badaczka.

Rekultywacja wysypiska śmieci to długi i skomplikowany proces. Jego ostatecznym celem jest zmniejszenie negatywnego wpływu zebranych śmieci na środowisko - oraz zintegrowanie terenu wysypiska z jego otoczeniem. Odpady są prasowane przez ciężki sprzęt, po czym obsypuje się je kolejnymi warstwami gleby, aby wreszcie - w ostatnim etapie - obsiać roślinami.

Preparat mógłby być dodawany do pierwszej warstwy gleby - ma on bowiem jeszcze jedną ważną właściwość. Mikroorganizmy dobraliśmy w taki sposób, żeby charakteryzowały się dodatkowo zdolnością do wchodzenia w interakcje z roślinami i stymulowania roślin do wzrostu - mówi badaczka.

Jest to działanie kompleksowe - podkreśla. W ten sposób możemy równocześnie przyspieszamy degradację tego, co niekorzystne - jak i pozytywnie oddziaływać na rośliny i inne organizmy.

Skąd pomysł stworzenia preparatu? Impulsem była obserwacja: mam trójkę dzieci i widzę, ile potrafimy wyprodukować plastikowych odpadów w jednym gospodarstwie domowym... To właśnie troska o to, co się stanie z naszym środowiskiem, natchnęła mnie do tego, aby do walki z plastikiem zalegającym na wysypiskach zastosować badania, które prowadzę na co dzień - podsumowuje toruńska biolog.


« powrót do artykułu

Share this post


Link to post
Share on other sites
3 godziny temu, KopalniaWiedzy.pl napisał:

 

 

 

3 godziny temu, KopalniaWiedzy.pl napisał:
3 godziny temu, KopalniaWiedzy.pl napisał:

Preparat, którego twórczynią jest dr hab. Grażyna Dąbrowska - genetyk z toruńskiego Uniwersytetu Mikołaja Kopernika, może przyspieszyć nawet o 20 proc. rozkład plastikowych materiałów zalegających na wysypiskach śmieci. Zawiera on mikroorganizmy (zwłaszcza grzyby) zdolne do wytwarzania enzymów hydrolitycznych degradujących plastik.

 

 

Te 20 procent  czy to az takie wielkie osiagniecie ??

Dlaczego pisze sie tyle o tym jak co o technologi itp ale nic nie napisano jak dlogo normalnie plastik sie rozklad

mam wrazenie ze to mydlenie oczu i bicie piany aby pokazac jak to  ci naukowcy z Torunia swiatowi sa i jakiego gigantycznego przelomu dokonali a caly swiat ma teraz calowac ich po stopach!

no  niestety dla mnie 20 % znaczy tyle co nic bo braklo jednego zera aby sie bylo czym chwalic

i do scislosci w necie znalazlem ile rozklada sie plastik- od 100 lat do 1000 lat... np papierki po cukierkach 450 lat- gdzies znalazlem ze niektore czesci plastikowe nawet i 50 tys lat sie potrafia rozkladac- wiec operujemy tak wielkimi ogromnymi wartosciami ze te 20% to poprostu jak kropla w basenie- ona nic nie wnosi doslownie zero

Nawet 100 lat jest dlugo majac na uwadze ile my ludzie w tym czasie jestesmy w stanie tego swinstwa wyprodukowac- napisalem 200 % to by byl efekt bo 25 lat lub nawet 50 lat na rozlozenie plastiku byl by to jakis ratunea ale my operujemy tutaj setkami lat!

Ok wiec ja jako nienaukowiec z nieTorunia tez wymyslilem sposob i jest on tylko 1000% skuteczniejszy niz ten 20% sposob z Torunia- jak kupuje w sklepie  cokolwiek to nie pakuje tego w  plastikowa torbe tylko papierowa- tak jest drozej ale czy aby naprawde drozej? A jaka skutecznosc :D:D

Share this post


Link to post
Share on other sites

Podany opis prasowania śmieci zupełnie nie pasuje do właściwych okoliczności stosowania preparatu. Jeśli to ma byś skuteczne, to powierzchnia kontaktu powinna być jak największa, czyli śmieci powinny zostać zmielone. To dla odmiany powoduje powstawanie mikroplastiku, który może być wypłukiwany daleko poza teren, gdzie był składowany.

Jak z tego wynika, mamy błędne koło, bo metoda skutecznie pomagająca niszczyć plastik będzie równie skutecznie niszczyć środowisko i plastik poza wysypiskiem. Niektórzy może pamiętają Destructol G-1 X…

Share this post


Link to post
Share on other sites
13 godzin temu, Usher napisał:

Niektórzy może pamiętają Destructol G-1 X…

…który „śmiało można zaliczyć do najwspanialszych osiągnięć naszej cywilizacji w dziedzinie chemii stosowanej, takich jak C2H5OH, cyklon B, iperyt, herbicydy, pestycydy, DDT, LSD, detergenty, defolianty. pluton czy napalm”.

Pamiętamy… 

Jest jednak pewna różnica. Destructex miał wnikać w subatomową strukturę materiału, a grzyb po prostu go żre od zewnątrz. Mam też nadzieję, że produkt powstały dzięki inżynierii genetycznej będzie zawierał odpowiednie zabezpieczenia.

Share this post


Link to post
Share on other sites
15 godzin temu, Ksen napisał:

…który „śmiało można zaliczyć do najwspanialszych osiągnięć naszej cywilizacji w dziedzinie chemii stosowanej, takich jak C2H5OH, cyklon B, iperyt, herbicydy, pestycydy, DDT, LSD, detergenty, defolianty. pluton czy napalm”.

Pamiętamy… 

I dopisujemy roundup…

15 godzin temu, Ksen napisał:

Jest jednak pewna różnica. Destructex miał wnikać w subatomową strukturę materiału, a grzyb po prostu go żre od zewnątrz. Mam też nadzieję, że produkt powstały dzięki inżynierii genetycznej będzie zawierał odpowiednie zabezpieczenia.

Nadzieja matką głupich. Nie ma stuprocentowych zabezpieczeń. Im coś powszechniej używane, tym bardziej skraca się czas do odkrycia luk w zabezpieczeniach czy niepożądanych skutków ubocznych. W przypadku organizmów żywych zwiększona presja środowiska sprzyja dostosowaniu się do niszy ekologicznej lub zmianie tej niszy, a krótszy czas życia oznacza szybszą selekcję - jest to więc rodzaj obejścia zabezpieczeń.

Różnica między substancją fizyko-chemiczną a organizmem żywym oznacza różne zasady działania, ale nie musi oznaczać różnicy w ocenie skutków ubocznych. W pierwszym przypadku może dojść do niepożądanych interakcji w przypadku zetknięcia z zestawem określonych substancji (coś może zadziałać jak katalizator, pojawi się efekt synergii), w drugim przypadku grzyby mogą sobie wybrać inną pożywkę w mieszaninie śmieci, mogą też zmutować i zmienić intensywność uszkadzania struktur. Przykładowo okazało się, że larwy niektórych omacnic (z pomocą bakterii) potrafią trawić polietylen, a nie tylko go przegryzać, potem okazało się, że inne owady też to potrafią - było już o tym w KW:

https://kopalniawiedzy.pl/barciak-wiekszy-Galleria-mellonella-gasienice-larwy-polietylen-glikol-etylenowy-Federica-Bertocchini,26335

https://kopalniawiedzy.pl/omacnica-spichrzanka-gasienica-larwa-przewod-pokarmowy-bakterie-polietylen-Enterobacter-asburiae-YT1-Bacillus-sp-YP1-Jun-Yang,21517

Share this post


Link to post
Share on other sites
16 godzin temu, Usher napisał:

Nie ma stuprocentowych zabezpieczeń.

Fakt, nie ma stuprocentowych zabezpieczeń. Przypuszczam, że nawet zaszycie w kodzie genetycznym takich genów, które będą jednocześnie niezbędne do funkcjonowania, a w określonych warunkach (uwolnienie specjalnej, z góry zaprojektowanej substancji) staną się zabójcze dla danego organizmu, też nie odniosłoby oczekiwanych skutków. Pomijając nawet to, że wytworzenie takiej mutacji wydaje się przekraczać możliwości współczesnej genetyki, stworzonka i tak znalazłyby dla siebie odpowiedni suplement, niwelujący szkodliwe dla niego skutki genocydnej plomby.

Opisywana przez Zajdla substancja miała wszelkie cechy organizmu żywego: dostosowywanie się do środowiska, przejmowanie nowych terytoriów itd. Była więc to taka animalizacja koszmarów. Pozwolę sobie użyć tutaj porównania pralniczego. Stworzenie super piorącej substancji, która będzie rozpuszczać wszystko i dostosowywać się do nowych brudów, jest jak wlanie do pralki czarciego puddingu – skończy się chińskim syndromem. Co innego w wypadku używania tego, co obecnie – wyspecjalizowanych substancji, zsyntetyzowanych na podobieństwo enzymów, które robią tylko to, do czego zostały stworzone, a potem się błyskawicznie rozkładają. I tak właśnie ma być.

Podsumowując, pozwolę sobie wyrazić nadzieję, że organizmy żywe będą służyć wyłącznie do produkcji odpowiednich substancji niszczących plastiki, a same będą trzymane w laboratoriach firm, które te chemikalia produkować będą. Istnieje już odpowiedni precedens: zazdrośnie strzeżony szczep E. coli, używany do produkcji ludzkiej insuliny. W tym wypadku całym sercem poparłbym działania chciwych na grosz kapitalistów…

Share this post


Link to post
Share on other sites

Uważam, że więcej sensu ma odkrycie organizmów, które potrafiłyby kumulować mikroplastik… W takim przypadku nie dość, że ze środowiska zostałaby wyeliminowana najbardziej uciążliwa frakcja śmieci, to moglibyśmy zyskać tanią metodę pozyskania dużych ilości surowców wtórnych.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
13 godzin temu, Usher napisał:

Uważam, że więcej sensu ma odkrycie organizmów, które potrafiłyby kumulować mikroplastik… W takim przypadku nie dość, że ze środowiska zostałaby wyeliminowana najbardziej uciążliwa frakcja śmieci, to moglibyśmy zyskać tanią metodę pozyskania dużych ilości surowców wtórnych.

Zacny pomysł. Ale… można sobie wyobrazić, że te stworzonka nauczą się dobierać do makroplastikowych opakowań. A wtedy nieoczekiwane rozsypanie się w rękach butli wypełnionej keczupem stanie się najmniejszym problemem.

Lepiej nie ożywiać koszmarów.

Share this post


Link to post
Share on other sites
17 godzin temu, Usher napisał:

Uważam, że więcej sensu ma odkrycie organizmów, które potrafiłyby kumulować mikroplastik…

Póżniej trzeba by jeszcze odkryć jak skumulować te organizmy kumulujące.

Share this post


Link to post
Share on other sites

Myślałem raczej o organizmach wodnych, głównie morskich, bo tam są chyba największe zasoby mikroplastiku. Przykładowo mogłyby być to jakieś organizmy żyjące w koloniach, zbierające mikroplastik i wykorzystujące go do budowy kolonii (czyli coś jakby plastikowe rafy czy konkrecje). Gdyby się okazało, że mikroplastik tonie i gromadzi się gdzieś bliżej dna, można wyhodować organizmy głębinowe, które na powierzchni nie przeżyją - i to byłoby dobre zabezpieczenie.

Jako że sam pisałem o ryzyku związanym ze swobodnym bytowaniem takich organizmów, mam też inną koncepcję. Zamiast ciąć na żyletki stare zbiornikowce, kontenerowce czy inne statki o dużej wyporności, można je przeznaczyć na pływające biologiczne oczyszczalnie ścieków prowadzące hodowlę tych organizmów. Zainstalować na nich baterie słoneczne i niech sobie dryfują pośród śmieci, co jakiś czas pobierając kolejną partię urobku do karmienia żyjątek i spuszczając odfiltrowaną wodę z powrotem do oceanu. Większe śmieci łatwo zbierać mechanicznie ale przecedzanie mikroplastiku niekoniecznie musi być wydajne, stąd pomysł wspomagania biologicznego.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W Holandii można się włączyć w cykl natury, decydując się na pochówek w żywej trumnie z grzybni, która przyspiesza rozkład ciała. Na pomysł Living Cocoon wpadł Bob Hendrikx z Technische Universiteit Delft.
      Jak można przeczytać w relacji prasowej z witryny naukowca, Living Cocoon pomaga w wydajniejszym kompostowaniu ciała i usuwa toksyczne substancje, tworząc lepsze warunki do wzrostu nowych drzew i innych roślin. Po intensywnych testach, prowadzonych we współpracy z firmami pogrzebowymi CUVO (Haga) i De Laatste Eer (Delft), nowa forma pochówku jest już gotowa do wdrożenia. Pierwszą pochowaną w ten sposób osobą była 82-letnia kobieta.
      Prędkość, z jaką rozkłada się ciało, zależy od wielu czynników, ale praktyka pokazuje, że proces ten może potrwać ponad 10 lat. Lakierowane i metalowe elementy trumny, a także ubiór z syntetycznych tkanin zachowują się dłużej. Przedstawiciele firmy Loop mają nadzieję, że ich trumna sprawi, że cały proces zakończy się w ciągu 2-3 lat (aktywnie przyczynia się ona bowiem do kompostowania).
      Jak podkreśla Holender, sama Living Cocoon zniknie w ciągu 30-45 dni. "To tak naprawdę żywy organizm; jest wykonana z grzybni", czyli plechy stanowiącej ciało grzybów.
      Ponieważ grzyby są mistrzami recyklingu, to najbardziej naturalny sposób [pochówku], jaki można sobie wyobrazić. Nie zanieczyszczamy środowiska toksynami ze swojego ciała i trumien, ale wzbogacamy je i stajemy się kompostem [...] - dodaje Hendrikx.
      Testy przeprowadzone przez Ecovative w Ameryce pokazały, że w normalnych holenderskich warunkach żywa trumna jest absorbowana w ciągu 30-45 dni. By określić korzystny wpływ na  jakość gleby, Loop nawiązało współpracę ze specjalistami z Naturalis. Celem mają być badania nad wzrostem bioróżnorodności związanym z tą formą pochówku. Chcemy dokładnie znać wkład Living Cocoon w skład gleby, ponieważ to pomoże nam przekonać lokalne władze, by wykorzystując nasze ciała jako źródło składników odżywczych, przekształcać zanieczyszczone obszary w zdrowy las.
      Hendrikx chciałby, aby żywa trumna pomogła stworzyć system o obiegu zamkniętym; chowając ciało w Living Cocoon, można by naprawić szkody wyrządzone naturze. Obecnie żyjemy na cmentarzysku natury. Nasze zachowanie jest nie tylko pasożytnicze, ale i krótkowzroczne. [...] Living Cocoon pozwala zjednoczyć się z przyrodą. W dodatku zamiast zanieczyszczać glebę, można ją użyźnić.
      Trumna z grzybni ma tę samą wielkość i formę, co klasyczna trumna. Różni się tylko kolorem, który pochodzi od barwy grzybni. Wnętrze wyścielone jest mchem. Living Cocoon jest lżejsza od drewnianego odpowiednika. Obecnie kosztuje ok. 1500 euro.
      Living Cocoon rośnie i jest kształtowana w ciągu 7 dni. By ją uzyskać, grzybnię miesza się w formie z organicznym substratem. W ciągu 7 dni, a więc całkiem szybko, grzybnia urośnie i stanie się ciałem stałym, które jest de facto żywym organizmem. Później całość jest naturalnie "suszona" przez usunięcie formy [...]. Wtedy grzybnia staje się nieaktywna. Po umieszczeniu w ziemi następuje ponowna aktywacja.
      Od 21 września Living Cocoon można oglądać na wystawie (Re)Design Death. Cube Design Museum w Kerkrade zachęca zwiedzających do "karmienia" trumny; ma się to przyczynić do wzrostu pobliskiego lasu.
      Obecnie Hendrikx i jego zespół eksperymentują ze świecącymi grzybami, tak by za ich pomocą móc oznaczać miejsca, gdzie zostali pochowani ludzie. Takie grzyby wykorzystywano by w zastępstwie nagrobnych zniczy i kwiatów.
      Living Cocoon nie jest pierwszym rozwiązaniem funeralnym uwzględniającym grzyby. W zeszłym roku nowojorska projektantka Shaina Garfield stworzyła ekologiczną "trumnę" Leaves. W tym przypadku owinięte w bawełnianą tkaninę ciało kładzie się na sosnowym drewnie. Całość zabezpiecza się siatką ze sznurka z zarodnikami grzybów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ilość plastiku nanoszona na plaże na odległych wyspach Południowego Atlantyku jest obecnie 10-krotnie większa niż przed dekadą, czytamy w Current Biology. Naukowcy sprawdzili, ile plastiku znajduje się w morzach otaczających odległe części brytyjskich terytoriów zamorskich. W badaniach uwzględniono również obszary na których istnieją lub są proponowane rezerwaty morskie.
      Po raz pierwszy w historii badania wykazały, że zanieczyszczenie plastikiem plaż na odległych wyspach Południowego Atlantyku jest niemal takie same, jak na uprzemysłowionych obszarach wybrzeży Północnego Atlantyku.
      Grupa naukowców z 10 różnych organizacji odbyła w latach 2013–2018 cztery wyprawy badawcze na pokładzie statku RRS James Clark Ross. Naukowcy badali powierzchnię wody, kolumnę wody, dno morskie, plaże i zwierzęta należące do 26 gatunków.
      Zauważono znaczący wzrost ilości plastiku na wszystkich badanych obszarach. Na plażach plastik stanowi ponad 90% wyrzucanych przez morze szczątków, a jego ilość znajduje się na rekordowo wysokim poziomie.
      Przed trzema dekadami wyspy te, należące do najbardziej odległych miejsc na planecie, były niemal dziewicze. W tym czasie ilość znajdowanych tam plastikowych śmieci wzrosła 100-krotnie. Plastik jest tak powszechny, że dotarł na dno oceanu. Znaleźliśmy go w całym łańcuchu pokarmowym, od planktonu po drapieżne ptaki morskie, mówi główny autor badań doktor David Barnes z British Antarctic Survey.
      Największą koncentrację plastiku stwierdzono na plażach. W 2018 roku na każdy metr wybrzeża Falklandów Wschodnich i Świętej Heleny przypadało do 300 fragmentów plastiku – to 10-krotnie więcej niż przed dekadą. Zrozumienie skali problemu to pierwszy krok w kierunku wspomożenia biznesu, przemysłu i społeczeństwa w poradzeniu sobie z tym problemem, dodaje Barnes.
      Plastikowe śmieci zabijają każdego roku 100 milionów zwierząt morskich. Giną one zaplątane w plastik, zatrute plastikiem i wskutek zatkania przewodu pokarmowego przez połknięty plastik. Dla odległych wysp, o unikatowym ekosystemie, poważnym problemem jest też fakt, że na plastikowych odpadach mogą na nie przybywać gatunki inwazyjne. A najnowsze badania pokazują, że zanieczyszczenie plastikiem to nie tylko problem obszarów uprzemysłowionych, ale dotyka on nawet najbardziej odległych obszarów planety, które jeszcze mają dobrze zachowaną bioróżnorodność.
      Te wyspy i ocean wokół nich to strażnicy zdrowia naszej planety. Pękają nam serca gdy widzimy albatrosy połykające plastik na pustkowiach tysiące kilometrów od ludzkich siedzib. To potężny dzwonek alarmowy. Jeśli nic z tym nie zrobimy, zagrożone będą nie tylko różne gatunki zwierząt, ale załamie się cały ekosystem, od którego zależy przetrwanie wielu społeczności ludzkich, mówi biolog Andy Schofield z Królewskiego Towarzystwa Ochrony Ptaków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Janice Brahney, biogeochemik z Utah State University chciała zbadać, jak wiatr roznosi składniki odżywcze w ekosystemie. Przez przypadek wykazała, jak bardzo zaśmieciliśmy planetę plastikiem. Okazało się, że amerykańskie parki narodowe, a więc obszary szczególnie chronione, oraz odległe niedostępne dzikie tereny są dosłownie zasypywane plastikowym pyłem. Każdego roku spada na nie ponad 1000 ton pyłu z tworzyw sztucznych.
      Ten mikroplastik pochodzi z ubrań, dywanów, a nawet farby w sprayu. Około 25% z tych odpadów ma swoje źródło w najbliższych miastach, reszta wędruje z wiatrem z dalszych okolic.
      W celu przeprowadzenia badań Brahney i jej zespół nawiązali współpracę z National Atmospheric Deposition Program i zbierali próbki pyłów ze stacji pogodowych, zbierających głównie informacje o opadach. Stacje NADP znajdują się najczęściej w odległych regionach kraju. Brahey zaczęła badać próbki z 11 stacji na zachodzie USA, w tym z Wielkiego Kanionu i Joshua Tree National Park. Oglądając je pod mikroskopem stwierdziła liczne fragmenty w jaskrawych kolorach. Zdałam sobie sprawę, że patrzę na plastik. Byłam w szoku, mówi uczona.
      Jako, że program jej prac nie przewidywał finansowania badań nad plastikiem, musiała zajmować się tym w wolnym czasie. Wieczorami i w weekendy liczyła i analizowała zgromadzone odrobinki plastiku.
      Stwierdziła, że w jej próbkach jest niemal 15 000 niewielkich fragmentów plastiku. Były to głównie małe włókna pochodzące prawdopodobnie z ubrań, dywanów i innych tekstyliów. Zauważyła, że około 30% stanowią jaskrawe mikrosfery, które są mniejsze niż plastikowe mikrosfery używane w kosmetykach czy innych produktach higienicznych. Uczona doszła do wniosku, że mikrosfery te pochodzą z farb w spreju.
      Po szczegółowych badaniach i obliczeniach zespół Brahney szacuje, że każdego dnia na każdym metrze kwadratowym dzikich terenów w USA lądują... 132 kawałki mikroplastiku. Innymi słowy na teren parków narodowych i innych obszarów chronionych na zachodzie USA opada ponad 1000 ton plastiku. To tak, jakby rozrzucać tam dziesiątki milionów plastikowych butelek.
      Naukowcy użyli modeli pogodowych, by sprawdzić, skąd pochodzi ten plastik. Okazało się, że źródłem większości są wielkie miasta i ich okolice. Większość plastiku pochodzi też z odległych miejsc, jest niesiona przez wiatry wiejące na dużej wysokości. Ponadto aż 75% plastiku opada gdy nie ma deszczu. Fragmenty opadające w czasie suchej pogody są też mniejsze, prawdopodobnie mogą wędrować tysiące kilometrów. uczeni stwierdzili też, że im wyżej położne tereny, tym więcej plastiku. To zaś potwierdza, że mikroplastik jest przenoszony przez wysoko wiejące wiatry i wędruje po całym globie.
      Uczona nie wyklucza, że mikroplastik może krążyć w powietrzu całymi latami lub dziesięcioleciami. Może on osiadać na polach uprawnych, pustyniach i powierzchni oceanów, skąd jest ponownie zabierany przez wiatr i krąży po całej Ziemi. Z czasem trafia do naszych płuc i naszych żołądków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Świat ma coraz większy problem z plastikowymi odpadami. By mu zaradzić chemicy z Cornell University opracowali nowy polimer o właściwościach wymaganych w rybołówstwie, który ulega degradacji pod wpływem promieniowania ultrafioletowego, dowiadujemy się z artykułu opublikowanego na łamach Journal of the American Chemical Society.
      Stworzyliśmy plastik o właściwościach mechanicznych wymaganych w komercyjnym rybołówstwie. Jeśli  wyposażenie to zostanie zgubione w wodzie, ulegnie degradacji w realistycznej skali czasowej. Taki materiał może zmniejszyć akumulowanie się plastiku w środowisku, mówi główny badacz, Bryce Lipinski, doktorant z laboratorium profesora Geoffa Coatesa. Uczony przypomina, że zgubione wyposażenie kutrów rybackich stanowi aż połowę plastikowych odpadów pływających w oceanach. Sieci i liny rybackie są wykonane z trzech głównych rodzajów polimerów: izotaktycznego polipropylenu, polietylenu o wysokiej gęstości oraz nylonu-6,6. Żaden z nich nie ulega łatwej degradacji.
      Profesor Coates od 15 lat pracuje na nowym rodzajem plastiku o nazwie izotaktyczny tlenek polipropylenu (iPPO). Podwaliny pod stworzenie tego materiału położono już w 1949 roku, jednak zanim nie zajął się nim Coates niewiele było wiadomo o jego wytrzymałości i właściwościach dotyczących fotodegradacji.
      Lipinski zauważył, że iPPO jest zwykle stabilny, jednak ulega degradacji pod wpływem promieniowania ultrafioletowego. W laboratorium widać skutki tej degradacji, jednak są one niewidoczne gołym okiem. Tempo rozpadu tworzywa zależy od intensywności promieniowania. W warunkach laboratoryjnych łańcuch polimerowy uległ skróceniu o 25% po 30-dniowej ekspozycji na UV. Ostatecznym celem naukowców jest stworzenie plastiku, który będzie rozpadał się całkowicie i nie pozostawi w środowisku żadnych śladów. Lipinski mówi, że w literaturze fachowej można znaleźć informacje o biodegradacji krótkich łańcuchów iPPO. Uczony ma jednak zamiar udowodnić, że całkowitemu rozpadowi będą ulegały tak duże przedmioty jak sieci rybackie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Rowie Mariańskim, najgłębszym rowie oceanicznym na Ziemi, znaleziono nowy gatunek obunoga. Jego łacińska nazwa Eurythenes plasticus nawiązuje do mikrowłókna tworzywa sztucznego, wykrytego w przewodzie pokarmowym (jelicie tylnym) jednego osobnika. Mikrowłókno stwierdzono w okazie z głębokości 6900 m. W ponad 83% (83,74%) przypominało ono PET, czyli poli(tereftalan etylenu).
      Nowo odkryty E. plasticus pokazuje nam, jak dalekosiężne konsekwencje ma niewłaściwe obchodzenie się z plastikowymi odpadami. Istnieją gatunki żyjące w najgłębszych, najbardziej odległych miejscach na Ziemi, które spożyły tworzywa sztuczne, zanim zostały poznane przez człowieka. Plastik znajduje się we wdychanym przez nas powietrzu, w pitej przez nas wodzie, a [...] także w zwierzętach żyjących z dala od ludzkiej cywilizacji - podkreśla Heike Vesper, dyrektorka programu morskiego niemieckiego WWF-u.
      Zdecydowaliśmy się nazwać obunoga Eurythenes plasticus, bo chcieliśmy zwrócić uwagę na fakt, że musimy podjąć natychmiastowe działania, by zahamować zalew oceanów odpadami z tworzyw sztucznych - dodaje dr Alan Jamieson z Uniwersytetu w Newcastle.
      Brytyjczycy wydobyli E. plasticus w 2014 r., używając na głębokościach 6010-6949 m (w hadalu) pułapek z przynętą. Badania morfologiczne oraz genetyczne wykazały, że to nowy gatunek.
      Głębokowodne obunogi są żarłocznymi, niewybrednymi konsumentami, przez co mogą być bardziej narażone na spożycie mikroplastiku. Przez niewielką ilość pokarmu tutejsze zwierzęta nauczyły się żywić wszystkim, co tylko się pojawi (opadnie). Na razie nie miały one wystarczająco dużo czasu, żeby wyewoluować strategie wykrywania czy unikania tworzyw sztucznych.
      Jak wyjaśnia Jamieson, pelagiczny plastik działa jak magnes na trwałe zanieczyszczenia organiczne. Po jakimś czasie razem opadają na dno. Gdy zostaną spożyte przez zwierzęta, mogą zmniejszyć sukces reprodukcyjny.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...