Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' rozkład'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Odpady plastikowe są wszędzie: na wysypiskach śmieci, w lasach, morzach i oceanach... Naukowcy mają mnóstwo pomysłów na to, jak z nimi walczyć. W ten trend ten wpisuje się też wynalazek z UMK w Toruniu: preparat przyspieszający proces rozkładu plastiku. Preparat, którego twórczynią jest dr hab. Grażyna Dąbrowska - genetyk z toruńskiego Uniwersytetu Mikołaja Kopernika, może przyspieszyć nawet o 20 proc. rozkład plastikowych materiałów zalegających na wysypiskach śmieci. Zawiera on mikroorganizmy (zwłaszcza grzyby) zdolne do wytwarzania enzymów hydrolitycznych degradujących plastik. Dr hab. Dąbrowska pracuje w Zakładzie Genetyki na Wydziale Biologii i Ochrony Środowiska UMK, gdzie zajmuje się m.in. genetyką roślin, ich interakcjami z mikroorganizmami oraz biodegradacją tworzyw sztucznych, zanieczyszczających glebę i wody. Ta wiedza pozwoliła jej dobrać składniki preparatu. Co grzyby mają wspólnego z plastikowymi odpadami? Jak się okazuje, całkiem sporo. Jak tłumaczy badaczka, składniki preparatu mają szczególne właściwości, dzięki którym mogą wejść w reakcję chemiczną z plastikiem. Dzięki temu tworzywa sztuczne tracą swoje właściwości: stają się na przykład mniej rozciągliwe czy bardziej przepuszczalne dla gazów, pary wodnej, tlenu czy dwutlenku węgla - opisuje dr hab. Dąbrowska. Efekty wynalazku z Torunia można zaobserwować po kilku miesiącach działania. Jak tłumaczy jego twórczyni, działanie preparatu wzmacniają wytwarzane przez grzyby białka, tworzące na powierzchni plastiku (zwłaszcza PET) specyficzną warstwę, ściśle przylegającą do danego tworzywa. Rosnąca grzybnia przylega więc do polimeru, równocześnie wytwarzając enzymy degradujące i zmieniające jego strukturę. Co znacznie zwiększa skuteczność procesu przyspieszania biodegradacji - tłumaczy dr hab. Dąbrowska. Twórczyni preparatu widzi jego zastosowanie przede wszystkim pod sam koniec cyklu życiowego wysypisk śmieci, w procesie rekultywacji. Przez wiele lat w Polsce nie była prowadzona poprawna selekcja odpadów i właściwie większość tworzyw sztucznych znajduje się w tym momencie na składowiskach odpadów. Ich ilości są olbrzymie - dlatego tak pomocne byłoby zmniejszenie ich gabarytów, przyspieszenie procesu ich rozkładu na samym początku procesu odzyskiwania terenu składowiska - opowiada badaczka. Rekultywacja wysypiska śmieci to długi i skomplikowany proces. Jego ostatecznym celem jest zmniejszenie negatywnego wpływu zebranych śmieci na środowisko - oraz zintegrowanie terenu wysypiska z jego otoczeniem. Odpady są prasowane przez ciężki sprzęt, po czym obsypuje się je kolejnymi warstwami gleby, aby wreszcie - w ostatnim etapie - obsiać roślinami. Preparat mógłby być dodawany do pierwszej warstwy gleby - ma on bowiem jeszcze jedną ważną właściwość. Mikroorganizmy dobraliśmy w taki sposób, żeby charakteryzowały się dodatkowo zdolnością do wchodzenia w interakcje z roślinami i stymulowania roślin do wzrostu - mówi badaczka. Jest to działanie kompleksowe - podkreśla. W ten sposób możemy równocześnie przyspieszamy degradację tego, co niekorzystne - jak i pozytywnie oddziaływać na rośliny i inne organizmy. Skąd pomysł stworzenia preparatu? Impulsem była obserwacja: mam trójkę dzieci i widzę, ile potrafimy wyprodukować plastikowych odpadów w jednym gospodarstwie domowym... To właśnie troska o to, co się stanie z naszym środowiskiem, natchnęła mnie do tego, aby do walki z plastikiem zalegającym na wysypiskach zastosować badania, które prowadzę na co dzień - podsumowuje toruńska biolog. « powrót do artykułu
  2. Mieloperoksydaza (MPO), enzym występujący w płucach, rozkłada czysty grafen. MPO to enzym należący do peroksydaz. Jest wydzielany przez neutrofile. Po wykryciu ciała obcego bądź bakterii neutrofile otaczają je i uwalniają MPO. Wcześniejsze badania Graphene Flagship wykazały, że MPO może biodegradować tlenek grafenu. Dotąd jednak sądzono, że niefunkcjonalizowany grafen jest bardziej oporny na degradację. By to sprawdzić, zespół z Francji, Szwecji i Hiszpanii prowadził testy ex vivo na jedno- i wielowarstwowym grafenie. Wykorzystaliśmy 2 postaci grafenu, jedno- i wielowarstwową [...]. Wystawiono je na oddziaływanie MPO w obecności nadtlenku wodoru. Okazało się, że peroksydaza była w stanie je degradować i utleniać. To było naprawdę nieoczekiwane, bo sądziliśmy, że niefunkcjonalizowany [niemodyfikowany] grafen jest bardziej oporny niż tlenek grafenu - opowiada Alberto Bianco z CNRS. Rajendra Kurapati, również z CNRS, dodaje, że wyniki pokazują, że wysoce rozpraszalny grafen może być rozkładany w organizmie w wyniku działania neutrofili. Po udanych testach ex vivo przyszedł czas na badania in vivo. Prof. Bengt Fadeel z Karolinska Institutet uważa, że zrozumienie, czy grafen jest biodegradowalny, czy nie, jest bardzo istotne dla zastosowań biomedycznych i innych tego materiału. Fakt, że komórki układu odpornościowego są w stanie sobie z nim radzić, jest bardzo obiecujący. Prof. Maurizio Prato dodaje, że enzymatyczny rozkład grafenu to bardzo ważny temat, gdyż, zasadniczo, grafen rozproszony w atmosferze mógłby wyrządzić jakieś szkody. Jeśli jednak istnieją mikroorganizmy zdolne do degradacji grafenu i materiałów pokrewnych, ich wpływ na środowisko (uporczywość) powinna znacznie spaść. Prato zaznacza, że należy badać produkty enzymatycznego rozkładu (pochodne): ich budowę i ewentualne oddziaływania na zdrowie i środowisko. « powrót do artykułu
  3. Po paru tygodniach mikroorganizmy glebowe kolonizują i zaczynają rozkładać powierzchnię polimeru - poli(adypinianu-co-tereftalanu butylenu), PBAT. To pokazuje, że warto by nim zastąpić polietylen, wykorzystywany np. w foliach do ściółkowania. Naukowcy ze Szwajcarii wyjaśniają, że skażenie plastikiem zagraża glebom uprawnym, bo rolnicy z całego świata stosują bardzo dużo polietylenowej folii do ściółkowania. Zwalczają w ten sposób chwasty, podwyższają temperaturę gleby i utrzymują jej wilgotność, co łącznie pozwala zwiększyć plony. Niestety, po zbiorach często trudno zebrać filmy w całości, zwłaszcza gdy mają one zaledwie parę mikrometrów grubości. Resztki akumulują się w glebie i ograniczają jej żyzność, zaburzają transport wody i ostatecznie - zmniejszają wzrost roślin. W ramach ostatniego studium zespół z Politechniki Federalnej w Zurychu i Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (Eawag) wykazał, że mikroorganizmy glebowe rozkładają folie z alternatywnego polimeru, wspominanego na początku PBAT. Autorzy publikacji z pisma Science Advances zademonstrowali, że węgiel z PBAT jest wykorzystywany do zwiększania biomasy i produkcji energii. To badanie jako pierwsze pokazuje, że mikroorganizmy glebowe mineralizują filmy PBAT i transferują węgiel z polimeru do swojej biomasy - wyjaśnia Michael Sander. Szwajcarzy podkreślają, że PBAT został już sklasyfikowany jako biodegradowalny w kompoście, dlatego zespół postanowił sprawdzić, czy ulega on biodegradacji także w glebach rolnych. Dla porównania, polietylen (PE) nie jest biodegradowany ani w kompoście, ani w glebie. W ostatnich latach potwierdzono tylko, że jest rozkładany zarówno przez bakterie z przewodu pokarmowego larw omacnicy spichrzanki (Plodia interpunctella), czyli mola spożywczego, jak i gąsienice barciaka większego (Galleria mellonella). W eksperymentach wykorzystano materiał z PBAT, który zsyntetyzowano na zamówienie; miał on zawierać zadaną ilość stabilnego izotopu węgla 13C. Takie znakowanie izotopem pozwoliło naukowcom śledzić węgiel pochodzący z polimeru (biodegradując PBAT, bakterie uwalniały go bowiem z polimeru). Za pomocą spektrometrii mas jonów wtórnych (NanoSIMS) akademicy odkryli, że 13C z PBAT był przekształcany w dwutlenek węgla w wyniku oddychania i stawał się częścią biomasy mikroorganizmów kolonizujących powierzchnię polimeru. Dla odmiany, wiele polimerów po prostu kruszy się do drobnych kawałeczków, które pozostają w środowisku w postaci mikroplastiku [...] - opowiada Hans-Peter Kohler. W ramach eksperymentu zespół wsypywał do szklanego naczynia 60 g gleby. Na tym podłożu umieszczano film z PBAT. Po 6 tygodniach inkubacji oceniano stopień skolonizowania powierzchni polimeru przez mikroorganizmy glebowe. Później analizowano ilość CO2 utworzonego w naczyniach oraz zawartość 13C. Na razie Szwajcarzy nie wiedzą, w jakim czasie PBAT uległby degradacji w naturalnym środowisku. Dlatego też potrzeba długoterminowych badań terenowych na różnych glebach i w różnych warunkach. Sander zaznacza, że nadal daleko nam do rozwiązania globalnego problemu skażenia plastikiem, ale zrobiliśmy 1. ważny krok w kierunku biodegradowalności plastików w glebie. Wyniki dotyczące gleby nie mogą być jednak bezpośrednio transferowane na pozostałe środowiska naturalne. Ze względu na inne warunki oraz inne społeczności bakteryjne biodegradacja polimerów w słonej wodzie może np. być znacznie wolniejsza. Jak dotąd tylko kilka koncernów chemicznych rozpoczęło produkcję i sprzedaż bardziej przyjaznych środowisku, ale i sporo droższych filmów z PBAT. « powrót do artykułu
×
×
  • Create New...