Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Preparat z UMK pomoże w walce z plastikowymi odpadami
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na Uniwersytecie w Linköping powstał akumulator, któremu można nadać dowolny kształt. Dzięki płynnym elektrodom można go będzie w dowolny sposób integrować z urządzeniami przyszłości. Tekstura materiału przypomina pastę do zębów. Można go będzie, na przykład, wykorzystać w drukarce 3D do wykonania akumulatora o dowolnym kształcie, mówi jeden z twórców nowatorskiego urządzenia, Aiman Rahmanudin.
Ludzkość używa coraz więcej gadżetów i urządzeń elektronicznych. Coraz więcej z nich to urządzenia noszone na ciele, jak pompy insulinowe, rozruszniki serca, implanty słuchu, w przyszłości coraz więcej elektroniki będzie zintegrowanej z ubraniami. Jeśli to wszystko ma działać i nie przeszkadzać użytkownikowi w codziennym funkcjonowaniu, potrzebne są nowe rodzaje baterii.
Baterie to największy składnik każdej elektroniki. Dzisiaj są to sztywne ciała stałe i dość nieporęczne. Jednak dzięki miękkim wygodnym bateriom możemy pozbyć niedogodności z nimi związanych. Można je będzie integrować w zupełnie inny sposób, niż obecnie, dodaje Rahmanudin.
Chcąc uniknąć błędów innych zespołów pracujących nad elastycznymi akumulatorami, naukowcy ze Szwecji wykorzystali polimery oraz ligninę. Ich urządzenie może być ładowane i rozładowywane ponad 500 razy i zachowuje swoją pojemność. Może być też rozciągnięte na 2-krotność swojej oryginalnej długości i wciąż dobrze działa.
Obecnie twórcy baterii pracują nad zwiększeniem napięcia. Nasza bateria nie jest doskonała. Sama koncepcja jest dobra, ale musimy poprawić wydajność. Obecnie możemy uzyskać 0,9 V. Szukamy innych związków chemicznych, by zwiększyć napięcie. Jedną z rozważanych przez nas opcji jest wykorzystanie cynku lub manganu, które powszechnie występują w skorupie ziemskiej, dodaje Rahmanudin.
Ze szczegółami nowej baterii można zapoznać się na łamach Science Advances.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Auke-Florian Hiemstra, naukowiec specjalizujący się w badaniu ptasich gniazd, który przed rokiem odkrył, że ptaki wykorzystują do budowy gniazd... kolce układane przez ludzi przeciwko ptakom, tym razem informuje o kolejnym fascynującym – i przerażającym – znalezisku. Znalazł gniazda zbudowane z nawarstwiającego się przez dekady plastiku. Odkrycie pokazuje, jak bardzo zanieczyściliśmy nasze otoczenie oraz jak wpływa to na zachowanie zwierząt.
Łyska to ptak powszechnie występujący w Europie. Można go spotkać na przykład w kanałach w Amsterdamie. Łyski zwykle nie wykorzystują ponownie wcześniej zbudowanych gniazd, gdyż tworzą je z nietrwałych materiałów roślinnych. Jednak w zanieczyszczonym przez ludzi środowisku miejskim ptaki zaczęły coraz częściej używać plastikowych odpadów. Jako że plastik się nie rozkłada, stare gniazda pozostają. I w ten sposób, warstwa po warstwie, rok po roku, plastikowe gniazdo się rozrasta. Heimstra trafił na gniazda, które istnieją w tym samym miejscu od 30 lat. Najstarsza warstwa ma tyle lat, co ja. Ptaki gniazdowały tutaj przez całe moje życie, mówi badacz.
Skąd jednak wiadomo, jak długo istnieje gniazdo? Wystarczyło sprawdzić daty upływu ważności produktów, które były w plastik zapakowane. W najstarszej warstwie znajduje się plastik datowany na początek lat 90., a skądinąd wiadomo, że łyski zaczęły gniazdować w Amsterdamie w 1989 roku. Gniazdo opowiada całą historię obecności tych ptaków w Amsterdamie, stwierdził uczony.
Wśród plastikowych odpadów znajduje się na przykład opakowanie batonika Mars wyprodukowane z okazji mistrzostw świata w piłce nożnej w USA w 1994 roku. Z kolei w górnej warstwie znajdziemy jednorazowe maseczki – śmieci, którymi zasypaliśmy Ziemię w trakcie pandemii COVID-19.
Znaczna część śmieci znalezionych w gniazdach pochodziła z opakowań żywności, szczególnie z pobliskiego McDonald'sa. Badacze znaleźli tam zarówno opakowania od McChickenów datowane na rok 1996, jak i współczesne opakowania od sosów do frytek. Odpady z sieci McDonald's, ze względu na jej rozpowszechnienie na świecie, to bardzo dobry znacznik plastikowych śmieci, które ludzkość po sobie pozostawia. Wydaje nam się, że gdy wyrzucamy plastikowy opad, to się go pozbywamy. Nic bardziej mylnego. Około 80% plastiku, jaki kiedykolwiek wyprodukowaliśmy, wciąż zanieczyszcza nasze środowisko i nasze organizmy.
Rozpowszechnienie niepodlegających rozkładowi plastikowych odpadów jest już tak wielkie, że niektórzy specjaliści mówią o „technostratygrafii”, kolejnych warstwach śmieci, które można wykorzystywać do datowania.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Plastik jest jednym z najbardziej rozpowszechnionych zanieczyszczeń. Znaleziono go w najbardziej odległych regionach planety, a mikro- i nanoplastik znaleziono wewnątrz organizmów roślinnych i zwierzęcych. Zanieczyściliśmy nim cały łańcuch pokarmowy. Coraz więcej badań jest prowadzonych pod kątem obecności plastiku na naszych organizmach, a jego wpływem na zdrowie. Naukowcy z chińskiego Uniwersytetu Rolnictwa i Leśnictwa Zhejiang informują o znalezieniu związku pomiędzy koncentracją plastiku w organach, uszkodzeniami tkanek i problemami zdrowotnymi.
Jeszcze 1950 roku ludzkość używała rocznie 2 miliony ton plastiku. Przewidywana produkcja na rok bieżący to 445 milionów ton. A z szacunków wynika, że w roku 2050 będzie to już 1,5 miliarda ton rocznie. To zaś oznacza kolejne miliardy ton plastiku krążące w wodzie, glebie, powietrzu, roślinach i zwierzętach. Niedawno informowaliśmy, że torebki od herbaty uwalniają do naparu gigantyczną liczbę fragmentów plastiku.
Chińscy uczeni przeanalizowali 61 artykułów naukowych dotyczących wykrywania mikro- i nanoplastiku w ludzkich tkankach oraz 840 artykułów na temat toksyczności plastiku. Autorzy analizowanych badań opisywali plastik znaleziony w ludzkiej skórze, żyłach, tętnicach, skrzepach krwi, szpiku kostnym, jądrach, spermie, macicy, łożysku, ślinie, układzie pokarmowym, wątrobie, płucach, kamieniach nerkowych czy odchodach. Wykazali, że istnieje dodatnia korelacja pomiędzy nagromadzeniem plastiku w organizmie, a nieswoistym zapaleniem jelit, zakrzepicą, rakiem szyjki macicy i mięśniakami macicy.
Badania toksykologiczne pokazały zaś, że plastik może wywoływać stres oksydacyjny, zaburzenia pracy mitochondriów, stany zapalne, apoptozę komórek. Naukowcy obawiają się też jego wpływu na funkcjonowanie różnych organów, w tym mózgu.
Chińscy badacze zauważyli też, że wyższa koncentracja mikro- i nanoplastiku jest skorelowana z występowaniem blizn a tkankach. Przykładami takich tkanek mogą być jelita z procesami zapalnymi, zwłóknienia w płucach czy guzy nowotworowe. Istnienie takiej korelacji może wskazywać, że istnieje związek pomiędzy coraz większą koncentracją plastiku w danym miejscu, a lokalnie występującymi patologiami.
Przeprowadzona przez chińskich uczonych metaanaliza to dobry punkt wyjścia do dalszych badań. W tej chwili nie wiemy z całą pewnością, czy to mikro- i nanoplastik powoduje bliznowacenie i włóknienie tkanek, stany zapalne, guzy nowotworowe, czy też po prostu łatwiej gromadzi się w takich tkankach. Obecnie nie istnieje żadna efektywna metoda usuwania mikroplastiku ze środowiska czy ludzkich tkanek.
Szczegóły badań zostały opublikowane w piśmie TrAC Trends in Analytical Chemistry.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Guoliang Liu z Wydziału Chemii Virginia Polytechnic Institute and State University (Virginia Tech), opracował metodę przetwarzania plastików – od „kartonowych” pojemników na napoje, poprzez pojemniki na żywność i foliowe torebki – na mydło. Jego tajemnica polega na podgrzewaniu długichł łańcuchów polimerowych i ich gwałtownym chłodzeniu. Mamy tutaj więc do czynienia z tzw. upcyclingiem, czyli uzyskiwaniem z przetwarzanego przedmiotu produktu o wysokiej wartości. W tym przypadku są do surfaktanty, które może zamienić w mydło czy detergent. Bardzo często recykling wiąże się z downcyklingiem, gdy poddany mu przedmiot można zamienić na produkt o niższej wartości.
Zamiana plastiku na mydło może być zaskakująca, ale oba te produkty mają wiele wspólnego na poziomie molekularnym. Struktura chemiczna polietylenu, jednego z najpowszechniej używanych tworzyw sztucznych, ma niezwykle podoba do struktury kwasów tłuszczowych używanych do produkcji mydła. Oba te materiały mają długie łańcuchy węglowe, jednak kwasy tłuszczowe mają na końcu łańcucha dodatkową grupę atomów.
Guoliang Liu od dłuższego czasu uważał, że dzięki temu podobieństwu powinno się udać zamienić polietylen w kwas tłuszczowy do produkcji mydła. Pytanie brzmiało, jak podzielić długie łańcuchy polimerowe na krótsze, ale nie za krótkie, i zrobić to efektywnie. Jeśli by się to udało, można by z plastikowych odpadów o niskiej wartości uzyskać produkt o wysokiej wartości.
Inspiracją dla naukowca stało się dymu z palącego się w kominku drewna.
Drewno kominkowe składa się głównie z polimerów, jak celuloza. Jego spalanie rozrywa polimery na mniejsze łańcuchy, następnie na małe gazowe molekuły, które w końcu utleniają się do tlenku węgla. Jeśli podobnie przerwiemy molekuły polietylenu, ale przerwiemy proces zanim staną się one molekułami gazowymi, powinniśmy otrzymać krótkie łańcuchy podobne do molekuł polimerów, stwierdził. W swoim laboratorium wykorzystał termolizę z gradientem temperatury. Na dole urządzenia do termolizy panuje wystarczająco wysoka temperatura, by poprzerywać łańcuchy polimerowe, a na górze jest ono na tyle schłodzone, że proces przerywania łańcuchów nie zachodzi. Po termolizie naukowcy zebrali sadzę z góry pieca i okazało się, że zawiera ona woski. Potrzebnych było jeszcze kilka etapów obróbki chemicznej, w tym zmydlanie, by otrzymać pierwsze w historii mydło z plastiku.
Cała procedura została przeanalizowana przez ekspertów od modelowania komputerowego, analiz ekonomicznych i innych dziedzin. Efektem prac jest artykuł opublikowany w Science. Nasze badania pokazują nowy sposób upcyclingu plastiku bez konieczności stosowania nowych katalizatorów czy złożonych procedur. To powinno zachęcić innych do opracowania kolejnych metod zamiany plastikowych odpadów na cenne produkty, mówi główny autor artykułu, Zhen Xu.
Co więcej, analizy wykazały, że tę samą metodę można wykorzystać podczas pracy z polipropylenem. Wraz z polietylenem stanowi od większość plastiku, z jakim mamy do czynienia w codziennym życiu. Dodatkową zaletą jest fakt, że metodę Liu można wykorzystać bez potrzeby oddzielania polietylenu od polipropylenu. Można je jednocześnie przetwarzać.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.