Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Odpady plastikowe są wszędzie: na wysypiskach śmieci, w lasach, morzach i oceanach... Naukowcy mają mnóstwo pomysłów na to, jak z nimi walczyć. W ten trend ten wpisuje się też wynalazek z UMK w Toruniu: preparat przyspieszający proces rozkładu plastiku.

Preparat, którego twórczynią jest dr hab. Grażyna Dąbrowska - genetyk z toruńskiego Uniwersytetu Mikołaja Kopernika, może przyspieszyć nawet o 20 proc. rozkład plastikowych materiałów zalegających na wysypiskach śmieci. Zawiera on mikroorganizmy (zwłaszcza grzyby) zdolne do wytwarzania enzymów hydrolitycznych degradujących plastik.

Dr hab. Dąbrowska pracuje w Zakładzie Genetyki na Wydziale Biologii i Ochrony Środowiska UMK, gdzie zajmuje się m.in. genetyką roślin, ich interakcjami z mikroorganizmami oraz biodegradacją tworzyw sztucznych, zanieczyszczających glebę i wody. Ta wiedza pozwoliła jej dobrać składniki preparatu.

Co grzyby mają wspólnego z plastikowymi odpadami? Jak się okazuje, całkiem sporo. Jak tłumaczy badaczka, składniki preparatu mają szczególne właściwości, dzięki którym mogą wejść w reakcję chemiczną z plastikiem. Dzięki temu tworzywa sztuczne tracą swoje właściwości: stają się na przykład mniej rozciągliwe czy bardziej przepuszczalne dla gazów, pary wodnej, tlenu czy dwutlenku węgla - opisuje dr hab. Dąbrowska.

Efekty wynalazku z Torunia można zaobserwować po kilku miesiącach działania. Jak tłumaczy jego twórczyni, działanie preparatu wzmacniają wytwarzane przez grzyby białka, tworzące na powierzchni plastiku (zwłaszcza PET) specyficzną warstwę, ściśle przylegającą do danego tworzywa. Rosnąca grzybnia przylega więc do polimeru, równocześnie wytwarzając enzymy degradujące i zmieniające jego strukturę. Co znacznie zwiększa skuteczność procesu przyspieszania biodegradacji - tłumaczy dr hab. Dąbrowska.

Twórczyni preparatu widzi jego zastosowanie przede wszystkim pod sam koniec cyklu życiowego wysypisk śmieci, w procesie rekultywacji. Przez wiele lat w Polsce nie była prowadzona poprawna selekcja odpadów i właściwie większość tworzyw sztucznych znajduje się w tym momencie na składowiskach odpadów. Ich ilości są olbrzymie - dlatego tak pomocne byłoby zmniejszenie ich gabarytów, przyspieszenie procesu ich rozkładu na samym początku procesu odzyskiwania terenu składowiska - opowiada badaczka.

Rekultywacja wysypiska śmieci to długi i skomplikowany proces. Jego ostatecznym celem jest zmniejszenie negatywnego wpływu zebranych śmieci na środowisko - oraz zintegrowanie terenu wysypiska z jego otoczeniem. Odpady są prasowane przez ciężki sprzęt, po czym obsypuje się je kolejnymi warstwami gleby, aby wreszcie - w ostatnim etapie - obsiać roślinami.

Preparat mógłby być dodawany do pierwszej warstwy gleby - ma on bowiem jeszcze jedną ważną właściwość. Mikroorganizmy dobraliśmy w taki sposób, żeby charakteryzowały się dodatkowo zdolnością do wchodzenia w interakcje z roślinami i stymulowania roślin do wzrostu - mówi badaczka.

Jest to działanie kompleksowe - podkreśla. W ten sposób możemy równocześnie przyspieszamy degradację tego, co niekorzystne - jak i pozytywnie oddziaływać na rośliny i inne organizmy.

Skąd pomysł stworzenia preparatu? Impulsem była obserwacja: mam trójkę dzieci i widzę, ile potrafimy wyprodukować plastikowych odpadów w jednym gospodarstwie domowym... To właśnie troska o to, co się stanie z naszym środowiskiem, natchnęła mnie do tego, aby do walki z plastikiem zalegającym na wysypiskach zastosować badania, które prowadzę na co dzień - podsumowuje toruńska biolog.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, KopalniaWiedzy.pl napisał:

 

 

 

3 godziny temu, KopalniaWiedzy.pl napisał:
3 godziny temu, KopalniaWiedzy.pl napisał:

Preparat, którego twórczynią jest dr hab. Grażyna Dąbrowska - genetyk z toruńskiego Uniwersytetu Mikołaja Kopernika, może przyspieszyć nawet o 20 proc. rozkład plastikowych materiałów zalegających na wysypiskach śmieci. Zawiera on mikroorganizmy (zwłaszcza grzyby) zdolne do wytwarzania enzymów hydrolitycznych degradujących plastik.

 

 

Te 20 procent  czy to az takie wielkie osiagniecie ??

Dlaczego pisze sie tyle o tym jak co o technologi itp ale nic nie napisano jak dlogo normalnie plastik sie rozklad

mam wrazenie ze to mydlenie oczu i bicie piany aby pokazac jak to  ci naukowcy z Torunia swiatowi sa i jakiego gigantycznego przelomu dokonali a caly swiat ma teraz calowac ich po stopach!

no  niestety dla mnie 20 % znaczy tyle co nic bo braklo jednego zera aby sie bylo czym chwalic

i do scislosci w necie znalazlem ile rozklada sie plastik- od 100 lat do 1000 lat... np papierki po cukierkach 450 lat- gdzies znalazlem ze niektore czesci plastikowe nawet i 50 tys lat sie potrafia rozkladac- wiec operujemy tak wielkimi ogromnymi wartosciami ze te 20% to poprostu jak kropla w basenie- ona nic nie wnosi doslownie zero

Nawet 100 lat jest dlugo majac na uwadze ile my ludzie w tym czasie jestesmy w stanie tego swinstwa wyprodukowac- napisalem 200 % to by byl efekt bo 25 lat lub nawet 50 lat na rozlozenie plastiku byl by to jakis ratunea ale my operujemy tutaj setkami lat!

Ok wiec ja jako nienaukowiec z nieTorunia tez wymyslilem sposob i jest on tylko 1000% skuteczniejszy niz ten 20% sposob z Torunia- jak kupuje w sklepie  cokolwiek to nie pakuje tego w  plastikowa torbe tylko papierowa- tak jest drozej ale czy aby naprawde drozej? A jaka skutecznosc :D:D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podany opis prasowania śmieci zupełnie nie pasuje do właściwych okoliczności stosowania preparatu. Jeśli to ma byś skuteczne, to powierzchnia kontaktu powinna być jak największa, czyli śmieci powinny zostać zmielone. To dla odmiany powoduje powstawanie mikroplastiku, który może być wypłukiwany daleko poza teren, gdzie był składowany.

Jak z tego wynika, mamy błędne koło, bo metoda skutecznie pomagająca niszczyć plastik będzie równie skutecznie niszczyć środowisko i plastik poza wysypiskiem. Niektórzy może pamiętają Destructol G-1 X…

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 godzin temu, Usher napisał:

Niektórzy może pamiętają Destructol G-1 X…

…który „śmiało można zaliczyć do najwspanialszych osiągnięć naszej cywilizacji w dziedzinie chemii stosowanej, takich jak C2H5OH, cyklon B, iperyt, herbicydy, pestycydy, DDT, LSD, detergenty, defolianty. pluton czy napalm”.

Pamiętamy… 

Jest jednak pewna różnica. Destructex miał wnikać w subatomową strukturę materiału, a grzyb po prostu go żre od zewnątrz. Mam też nadzieję, że produkt powstały dzięki inżynierii genetycznej będzie zawierał odpowiednie zabezpieczenia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
15 godzin temu, Ksen napisał:

…który „śmiało można zaliczyć do najwspanialszych osiągnięć naszej cywilizacji w dziedzinie chemii stosowanej, takich jak C2H5OH, cyklon B, iperyt, herbicydy, pestycydy, DDT, LSD, detergenty, defolianty. pluton czy napalm”.

Pamiętamy… 

I dopisujemy roundup…

15 godzin temu, Ksen napisał:

Jest jednak pewna różnica. Destructex miał wnikać w subatomową strukturę materiału, a grzyb po prostu go żre od zewnątrz. Mam też nadzieję, że produkt powstały dzięki inżynierii genetycznej będzie zawierał odpowiednie zabezpieczenia.

Nadzieja matką głupich. Nie ma stuprocentowych zabezpieczeń. Im coś powszechniej używane, tym bardziej skraca się czas do odkrycia luk w zabezpieczeniach czy niepożądanych skutków ubocznych. W przypadku organizmów żywych zwiększona presja środowiska sprzyja dostosowaniu się do niszy ekologicznej lub zmianie tej niszy, a krótszy czas życia oznacza szybszą selekcję - jest to więc rodzaj obejścia zabezpieczeń.

Różnica między substancją fizyko-chemiczną a organizmem żywym oznacza różne zasady działania, ale nie musi oznaczać różnicy w ocenie skutków ubocznych. W pierwszym przypadku może dojść do niepożądanych interakcji w przypadku zetknięcia z zestawem określonych substancji (coś może zadziałać jak katalizator, pojawi się efekt synergii), w drugim przypadku grzyby mogą sobie wybrać inną pożywkę w mieszaninie śmieci, mogą też zmutować i zmienić intensywność uszkadzania struktur. Przykładowo okazało się, że larwy niektórych omacnic (z pomocą bakterii) potrafią trawić polietylen, a nie tylko go przegryzać, potem okazało się, że inne owady też to potrafią - było już o tym w KW:

https://kopalniawiedzy.pl/barciak-wiekszy-Galleria-mellonella-gasienice-larwy-polietylen-glikol-etylenowy-Federica-Bertocchini,26335

https://kopalniawiedzy.pl/omacnica-spichrzanka-gasienica-larwa-przewod-pokarmowy-bakterie-polietylen-Enterobacter-asburiae-YT1-Bacillus-sp-YP1-Jun-Yang,21517

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
16 godzin temu, Usher napisał:

Nie ma stuprocentowych zabezpieczeń.

Fakt, nie ma stuprocentowych zabezpieczeń. Przypuszczam, że nawet zaszycie w kodzie genetycznym takich genów, które będą jednocześnie niezbędne do funkcjonowania, a w określonych warunkach (uwolnienie specjalnej, z góry zaprojektowanej substancji) staną się zabójcze dla danego organizmu, też nie odniosłoby oczekiwanych skutków. Pomijając nawet to, że wytworzenie takiej mutacji wydaje się przekraczać możliwości współczesnej genetyki, stworzonka i tak znalazłyby dla siebie odpowiedni suplement, niwelujący szkodliwe dla niego skutki genocydnej plomby.

Opisywana przez Zajdla substancja miała wszelkie cechy organizmu żywego: dostosowywanie się do środowiska, przejmowanie nowych terytoriów itd. Była więc to taka animalizacja koszmarów. Pozwolę sobie użyć tutaj porównania pralniczego. Stworzenie super piorącej substancji, która będzie rozpuszczać wszystko i dostosowywać się do nowych brudów, jest jak wlanie do pralki czarciego puddingu – skończy się chińskim syndromem. Co innego w wypadku używania tego, co obecnie – wyspecjalizowanych substancji, zsyntetyzowanych na podobieństwo enzymów, które robią tylko to, do czego zostały stworzone, a potem się błyskawicznie rozkładają. I tak właśnie ma być.

Podsumowując, pozwolę sobie wyrazić nadzieję, że organizmy żywe będą służyć wyłącznie do produkcji odpowiednich substancji niszczących plastiki, a same będą trzymane w laboratoriach firm, które te chemikalia produkować będą. Istnieje już odpowiedni precedens: zazdrośnie strzeżony szczep E. coli, używany do produkcji ludzkiej insuliny. W tym wypadku całym sercem poparłbym działania chciwych na grosz kapitalistów…

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Uważam, że więcej sensu ma odkrycie organizmów, które potrafiłyby kumulować mikroplastik… W takim przypadku nie dość, że ze środowiska zostałaby wyeliminowana najbardziej uciążliwa frakcja śmieci, to moglibyśmy zyskać tanią metodę pozyskania dużych ilości surowców wtórnych.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 godzin temu, Usher napisał:

Uważam, że więcej sensu ma odkrycie organizmów, które potrafiłyby kumulować mikroplastik… W takim przypadku nie dość, że ze środowiska zostałaby wyeliminowana najbardziej uciążliwa frakcja śmieci, to moglibyśmy zyskać tanią metodę pozyskania dużych ilości surowców wtórnych.

Zacny pomysł. Ale… można sobie wyobrazić, że te stworzonka nauczą się dobierać do makroplastikowych opakowań. A wtedy nieoczekiwane rozsypanie się w rękach butli wypełnionej keczupem stanie się najmniejszym problemem.

Lepiej nie ożywiać koszmarów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
17 godzin temu, Usher napisał:

Uważam, że więcej sensu ma odkrycie organizmów, które potrafiłyby kumulować mikroplastik…

Póżniej trzeba by jeszcze odkryć jak skumulować te organizmy kumulujące.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myślałem raczej o organizmach wodnych, głównie morskich, bo tam są chyba największe zasoby mikroplastiku. Przykładowo mogłyby być to jakieś organizmy żyjące w koloniach, zbierające mikroplastik i wykorzystujące go do budowy kolonii (czyli coś jakby plastikowe rafy czy konkrecje). Gdyby się okazało, że mikroplastik tonie i gromadzi się gdzieś bliżej dna, można wyhodować organizmy głębinowe, które na powierzchni nie przeżyją - i to byłoby dobre zabezpieczenie.

Jako że sam pisałem o ryzyku związanym ze swobodnym bytowaniem takich organizmów, mam też inną koncepcję. Zamiast ciąć na żyletki stare zbiornikowce, kontenerowce czy inne statki o dużej wyporności, można je przeznaczyć na pływające biologiczne oczyszczalnie ścieków prowadzące hodowlę tych organizmów. Zainstalować na nich baterie słoneczne i niech sobie dryfują pośród śmieci, co jakiś czas pobierając kolejną partię urobku do karmienia żyjątek i spuszczając odfiltrowaną wodę z powrotem do oceanu. Większe śmieci łatwo zbierać mechanicznie ale przecedzanie mikroplastiku niekoniecznie musi być wydajne, stąd pomysł wspomagania biologicznego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na Uniwersytecie w Linköping powstał akumulator, któremu można nadać dowolny kształt. Dzięki płynnym elektrodom można go będzie w dowolny sposób integrować z urządzeniami przyszłości. Tekstura materiału przypomina pastę do zębów. Można go będzie, na przykład, wykorzystać w drukarce 3D do wykonania akumulatora o dowolnym kształcie, mówi jeden z twórców nowatorskiego urządzenia, Aiman Rahmanudin.
      Ludzkość używa coraz więcej gadżetów i urządzeń elektronicznych. Coraz więcej z nich to urządzenia noszone na ciele, jak pompy insulinowe, rozruszniki serca, implanty słuchu, w przyszłości coraz więcej elektroniki będzie zintegrowanej z ubraniami. Jeśli to wszystko ma działać i nie przeszkadzać użytkownikowi w codziennym funkcjonowaniu, potrzebne są nowe rodzaje baterii.
      Baterie to największy składnik każdej elektroniki. Dzisiaj są to sztywne ciała stałe i dość nieporęczne. Jednak dzięki miękkim wygodnym bateriom możemy pozbyć niedogodności z nimi związanych. Można je będzie integrować w zupełnie inny sposób, niż obecnie, dodaje Rahmanudin.
      Chcąc uniknąć błędów innych zespołów pracujących nad elastycznymi akumulatorami, naukowcy ze Szwecji wykorzystali polimery oraz ligninę. Ich urządzenie może być ładowane i rozładowywane ponad 500 razy i zachowuje swoją pojemność. Może być też rozciągnięte na 2-krotność swojej oryginalnej długości i wciąż dobrze działa.
      Obecnie twórcy baterii pracują nad zwiększeniem napięcia. Nasza bateria nie jest doskonała. Sama koncepcja jest dobra, ale musimy poprawić wydajność. Obecnie możemy uzyskać 0,9 V. Szukamy innych związków chemicznych, by zwiększyć napięcie. Jedną z rozważanych przez nas opcji jest wykorzystanie cynku lub manganu, które powszechnie występują w skorupie ziemskiej, dodaje Rahmanudin.
      Ze szczegółami nowej baterii można zapoznać się na łamach Science Advances.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Auke-Florian Hiemstra, naukowiec specjalizujący się w badaniu ptasich gniazd, który przed rokiem odkrył, że ptaki wykorzystują do budowy gniazd... kolce układane przez ludzi przeciwko ptakom, tym razem informuje o kolejnym fascynującym – i przerażającym – znalezisku. Znalazł gniazda zbudowane z nawarstwiającego się przez dekady plastiku. Odkrycie pokazuje, jak bardzo zanieczyściliśmy nasze otoczenie oraz jak wpływa to na zachowanie zwierząt.
      Łyska to ptak powszechnie występujący w Europie. Można go spotkać na przykład w kanałach w Amsterdamie. Łyski zwykle nie wykorzystują ponownie wcześniej zbudowanych gniazd, gdyż tworzą je z nietrwałych materiałów roślinnych. Jednak w zanieczyszczonym przez ludzi środowisku miejskim ptaki zaczęły coraz częściej używać plastikowych odpadów. Jako że plastik się nie rozkłada, stare gniazda pozostają. I w ten sposób, warstwa po warstwie, rok po roku, plastikowe gniazdo się rozrasta. Heimstra trafił na gniazda, które istnieją w tym samym miejscu od 30 lat. Najstarsza warstwa ma tyle lat, co ja. Ptaki gniazdowały tutaj przez całe moje życie, mówi badacz.
      Skąd jednak wiadomo, jak długo istnieje gniazdo? Wystarczyło sprawdzić daty upływu ważności produktów, które były w plastik zapakowane. W najstarszej warstwie znajduje się plastik datowany na początek lat 90., a skądinąd wiadomo, że łyski zaczęły gniazdować w Amsterdamie w 1989 roku. Gniazdo opowiada całą historię obecności tych ptaków w Amsterdamie, stwierdził uczony.
      Wśród plastikowych odpadów znajduje się na przykład opakowanie batonika Mars wyprodukowane z okazji mistrzostw świata w piłce nożnej w USA w 1994 roku. Z kolei w górnej warstwie znajdziemy jednorazowe maseczki – śmieci, którymi zasypaliśmy Ziemię w trakcie pandemii COVID-19.
      Znaczna część śmieci znalezionych w gniazdach pochodziła z opakowań żywności, szczególnie z pobliskiego McDonald'sa. Badacze znaleźli tam zarówno opakowania od McChickenów datowane na rok 1996, jak i współczesne opakowania od sosów do frytek. Odpady z sieci McDonald's, ze względu na jej rozpowszechnienie na świecie, to bardzo dobry znacznik plastikowych śmieci, które ludzkość po sobie pozostawia. Wydaje nam się, że gdy wyrzucamy plastikowy opad, to się go pozbywamy. Nic bardziej mylnego. Około 80% plastiku, jaki kiedykolwiek wyprodukowaliśmy, wciąż zanieczyszcza nasze środowisko i nasze organizmy.
      Rozpowszechnienie niepodlegających rozkładowi plastikowych odpadów jest już tak wielkie, że niektórzy specjaliści mówią o „technostratygrafii”, kolejnych warstwach śmieci, które można wykorzystywać do datowania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Plastik jest jednym z najbardziej rozpowszechnionych zanieczyszczeń. Znaleziono go w najbardziej odległych regionach planety, a mikro- i nanoplastik znaleziono wewnątrz organizmów roślinnych i zwierzęcych. Zanieczyściliśmy nim cały łańcuch pokarmowy. Coraz więcej badań jest prowadzonych pod kątem obecności plastiku na naszych organizmach, a jego wpływem na zdrowie. Naukowcy z chińskiego Uniwersytetu Rolnictwa i Leśnictwa Zhejiang informują o znalezieniu związku pomiędzy koncentracją plastiku w organach, uszkodzeniami tkanek i problemami zdrowotnymi.
      Jeszcze 1950 roku ludzkość używała rocznie 2 miliony ton plastiku. Przewidywana produkcja na rok bieżący to 445 milionów ton. A z szacunków wynika, że w roku 2050 będzie to już 1,5 miliarda ton rocznie. To zaś oznacza kolejne miliardy ton plastiku krążące w wodzie, glebie, powietrzu, roślinach i zwierzętach. Niedawno informowaliśmy, że torebki od herbaty uwalniają do naparu gigantyczną liczbę fragmentów plastiku.
      Chińscy uczeni przeanalizowali 61 artykułów naukowych dotyczących wykrywania mikro- i nanoplastiku w ludzkich tkankach oraz 840 artykułów na temat toksyczności plastiku. Autorzy analizowanych badań opisywali plastik znaleziony w ludzkiej skórze, żyłach, tętnicach, skrzepach krwi, szpiku kostnym, jądrach, spermie, macicy, łożysku, ślinie, układzie pokarmowym, wątrobie, płucach, kamieniach nerkowych czy odchodach. Wykazali, że istnieje dodatnia korelacja pomiędzy nagromadzeniem plastiku w organizmie, a nieswoistym zapaleniem jelit, zakrzepicą, rakiem szyjki macicy i mięśniakami macicy.
      Badania toksykologiczne pokazały zaś, że plastik może wywoływać stres oksydacyjny, zaburzenia pracy mitochondriów, stany zapalne, apoptozę komórek. Naukowcy obawiają się też jego wpływu na funkcjonowanie różnych organów, w tym mózgu.
      Chińscy badacze zauważyli też, że wyższa koncentracja mikro- i nanoplastiku jest skorelowana z występowaniem blizn a tkankach. Przykładami takich tkanek mogą być jelita z procesami zapalnymi, zwłóknienia w płucach czy guzy nowotworowe. Istnienie takiej korelacji może wskazywać, że istnieje związek pomiędzy coraz większą koncentracją plastiku w danym miejscu, a lokalnie występującymi patologiami.
      Przeprowadzona przez chińskich uczonych metaanaliza to dobry punkt wyjścia do dalszych badań. W tej chwili nie wiemy z całą pewnością, czy to mikro- i nanoplastik powoduje bliznowacenie i włóknienie tkanek, stany zapalne, guzy nowotworowe, czy też po prostu łatwiej gromadzi się w takich tkankach. Obecnie nie istnieje żadna efektywna metoda usuwania mikroplastiku ze środowiska czy ludzkich tkanek.
      Szczegóły badań zostały opublikowane w piśmie TrAC Trends in Analytical Chemistry.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Guoliang Liu z Wydziału Chemii Virginia Polytechnic Institute and State University (Virginia Tech), opracował metodę przetwarzania plastików – od „kartonowych” pojemników na napoje, poprzez pojemniki na żywność i foliowe torebki – na mydło. Jego tajemnica polega na podgrzewaniu długichł łańcuchów polimerowych i ich gwałtownym chłodzeniu. Mamy tutaj więc do czynienia z tzw. upcyclingiem, czyli uzyskiwaniem z przetwarzanego przedmiotu produktu o wysokiej wartości. W tym przypadku są do surfaktanty, które może zamienić w mydło czy detergent. Bardzo często recykling wiąże się z downcyklingiem, gdy poddany mu przedmiot można zamienić na produkt o niższej wartości.
      Zamiana plastiku na mydło może być zaskakująca, ale oba te produkty mają wiele wspólnego na poziomie molekularnym. Struktura chemiczna polietylenu, jednego z najpowszechniej używanych tworzyw sztucznych, ma niezwykle podoba do struktury kwasów tłuszczowych używanych do produkcji mydła. Oba te materiały mają długie łańcuchy węglowe, jednak kwasy tłuszczowe mają na końcu łańcucha dodatkową grupę atomów.
      Guoliang Liu od dłuższego czasu uważał, że dzięki temu podobieństwu powinno się udać zamienić polietylen w kwas tłuszczowy do produkcji mydła. Pytanie brzmiało, jak podzielić długie łańcuchy polimerowe na krótsze, ale nie za krótkie, i zrobić to efektywnie. Jeśli by się to udało, można by z plastikowych odpadów o niskiej wartości uzyskać produkt o wysokiej wartości.
      Inspiracją dla naukowca stało się dymu z palącego się w kominku drewna.
      Drewno kominkowe składa się głównie z polimerów, jak celuloza. Jego spalanie rozrywa polimery na mniejsze łańcuchy, następnie na małe gazowe molekuły, które w końcu utleniają się do tlenku węgla. Jeśli podobnie przerwiemy molekuły polietylenu, ale przerwiemy proces zanim staną się one molekułami gazowymi, powinniśmy otrzymać krótkie łańcuchy podobne do molekuł polimerów, stwierdził. W swoim laboratorium wykorzystał termolizę z gradientem temperatury. Na dole urządzenia do termolizy panuje wystarczająco wysoka temperatura, by poprzerywać łańcuchy polimerowe, a na górze jest ono na tyle schłodzone, że proces przerywania łańcuchów nie zachodzi. Po termolizie naukowcy zebrali sadzę z góry pieca i okazało się, że zawiera ona woski. Potrzebnych było jeszcze kilka etapów obróbki chemicznej, w tym zmydlanie, by otrzymać pierwsze w historii mydło z plastiku.
      Cała procedura została przeanalizowana przez ekspertów od modelowania komputerowego, analiz ekonomicznych i innych dziedzin. Efektem prac jest artykuł opublikowany w Science. Nasze badania pokazują nowy sposób upcyclingu plastiku bez konieczności stosowania nowych katalizatorów czy złożonych procedur. To powinno zachęcić innych do opracowania kolejnych metod zamiany plastikowych odpadów na cenne produkty, mówi główny autor artykułu, Zhen Xu.
      Co więcej, analizy wykazały, że tę samą metodę można wykorzystać podczas pracy z polipropylenem. Wraz z polietylenem stanowi od większość plastiku, z jakim mamy do czynienia w codziennym życiu. Dodatkową zaletą jest fakt, że metodę Liu można wykorzystać bez potrzeby oddzielania polietylenu od polipropylenu. Można je jednocześnie przetwarzać.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...