Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Niezwykła podróż skały – z Ziemi na Księżyc i z powrotem

Rekomendowane odpowiedzi

Gdy astronauci z misji Apollo 14 zebrali w 1971 roku skały księżycowe i przywieźli je na Ziemię, nie widzieli, że prawdopodobnie zabrali ze Srebrnego Globu fragment, który w przeszłości z Ziemi trafił na Księżyc.

Skały są wyrzucane z Księżyca przez cały czas wskutek uderzeń meteorytów. Część z nich spada na Ziemię. Nie ma więc powodu, by zaprzeczać, że skała może przebyć też odwrotną podróż – z Ziemi na Księżyc. Wiemy, że Ziemia jest bombardowana przez meteoryty, a niektóre uderzenia były na tyle potężne, że mogły odrzucić fragmenty naszej planety na tyle daleko, by uwolniły się one z grawitacyjnych objęć Ziemi i np. wylądowały na Księżycu.

Jeremy Bellucci i jego koledzy ze Szwedzkiego Muzeum Historii Naturalnej właśnie zidentyfikowali taką skałę. To niewielki kawałek granitu przywieziony z Księżyca przez członków Apollo 14. Naukowcy badali skład chemiczny i właściwości fizyczne kryształów cyrkonu w granicie. Chcieli dowiedzieć się, w jakich warunkach skała powstała. Odkryli, że badany przez nich fragment powstał w środowisku znacznie bardziej bogatym w tlen niż Księżyc oraz w warunkach niezwykle niskiej temperatury i wysokiego ciśnienia jak na skały księżycowe. Jeśli powstałby na Księżycu, to musiałby utworzyć się na głębokości 167 kilometrów pod powierzchnią, mówi Bellucci. Nawet wielki meteoryt upadający na Księżyc nie utworzyłby krateru, z którego mógłby wydobyć się badany fragment.

Oczywiście nie można wykluczyć, że skała rzeczywiście powstała w niezwykłych okolicznościach na Księżycu, jednak naukowcy zwracają uwagę, że jest znacznie prostsze wyjaśnienie. Brzmi ono: skała pochodzi z Ziemi, gdyż jest podobna do ziemskich skał magmowych.

William Bottke z Southwest Research Institute w Kolorado mówi: Oni zwrócili uwagę na interesującą rzecz i podali możliwe wyjaśnienie. Teraz musimy sprawdzić, czy mogą mieć rację. Można by się o tym przekonać badając inne próbki księżycowych skał i szukając wśród nich takich, w których znajdują się związki chemiczne niewystępujące na Księżycu, a występujące na Ziemi.
Zidentyfikowany meteoryt jest jedną z najstarszych znanych nam skał pochodzących z Ziemi. Dzięki niemu możemy sporo dowiedzieć się o tym, jak wyglądała powierzchnia naszej planety wkrótce po uformowaniu się. Księżyc zmienił się w ciągu miliardów lat mniej, niż Ziemia, zatem zachowane na nim fragmenty naszej planety również będą mniej zmienione.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wątpię. Z jaką siłą musiałoby coś uderzyć w Ziemię żeby wrzucić kamień z taką prędkością żeby pokonał przyciąganie, by oddalił się na tyle od Ziemi by grawitacja Księżyca go przyciągnęła? Może owi teoretycy dokonają stosownych obliczeń.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Fakt, Księżyc powstał w wyniku kolizji dwóch planet i został utworzony ze skał znajdujących się w zewnętrznych warstwach Ziemi. Jakby ze salpu. Dlatego ma inny skład skał. Kamień opisany w artykule ma jednak skład nietypowy jak na skałę księżycówą, więc musiał tam trafić w wyniku innej kolizji. Stąd pytanie jaka musiałaby być moc owej kolizji lub pęd owego ciała, które udeżyło w Ziemię, jest zasadne.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Io, księżyc Jowisza, to najbardziej aktywne pod względem wulkanicznym ciało Układu Słonecznego. Jest on rozmiarów mniej więcej ziemskiego Księżyca, a istnieje na nim około 400 aktywnych wulkanów. Księżyc został odkryty przez Galileusza 8 stycznia 1610 roku, jednak na odkrycie wulkanów trzeba było czekać do 1979 roku. Pierwszy dowód na aktywność wulkaniczną zauważyła Linda Morabito na zdjęciach przesłanych przez sondę Voyager 1.
      Od czasu odkrycia Morabito specjaliści zastanawiali się, w jaki sposób lawa zasila wulkany. Czy płytko pod powierzchnią znajduje się ocean lawy, czy też źródła są bardziej zlokalizowane. Wiedzieliśmy, że dane z dwóch bardzo bliskich przelotów sondy Juno powinny pozwolić na bliższe przyjrzenie się temu zagadnieniu, mówi Scott Bolton z Southwest Research Institute w San Antonio.
      W grudniu 2023 i lutym 2024 sonda Juno przeleciała w odległości zaledwie 1500 kilometrów od powierzchni Io. Za pomocą radaru dopplerowskiego działającego w dwóch zakresach, zebrała bardzo szczegółowe dane na temat grawitacji księżyca. W ten sposób udało się zebrać bardziej szczegółowe informacje na temat występującego na Io grzania pływowego.
      Io znajduje się bardzo blisko gigantycznego Jowisza. Obiegając planetę, doświadcza zmian jej pola grawitacyjnego, które powodują, że księżyc jest bez przerwy ściskany i rozciągany. To zaś wywołuje ciągłe tarcie, roztapiające fragmenty wnętrza księżyca. Wiedzieliśmy, że jeśli pod powierzchnią istnieje ocean magmy, sygnatura grzania pływowego będzie znacznie większa, niż w przypadku bardziej sztywnej struktury wewnętrznej. Zatem, w zależności od danych zebranych przez Juno z pola grawitacyjnego Io, powinniśmy wiedzieć, czy pod powierzchnią księżyca znajduje się ocean, wyjaśnia Bolton.
      Naukowcy porównali dane z Juno z dwoma wcześniejszymi przelotami wykonanymi przez inne misje i stwierdzili, że Io nie posiada oceanu magmy. Z tego wynika, że każdy wulkan Io jest prawdopodobnie zasilany z własnej komory magmowej.
      Odkrycie, że grzanie pływowe nie musi prowadzić do powstania magmowego oceanu spowodowało, że musieliśmy przemyśleć wewnętrzną strukturę Io. Ma to też znaczenie dla naszego rozumienia innych księżyców, jak Enceladus i Europa, a nawet dla planet pozasłonecznych, dodaje Ryan Park z Solad System Dynamics Group w Jet Propulsion Laboratory.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2023 roku średnia temperatura była niemal o 1,5 stopnia wyższa od średniej sprzed rewolucji przemysłowej. Jednak naukowcy próbujący wyjaśnić ten wzrost, mają kłopoty z określeniem jego przyczyn. Gdy bowiem biorą pod uwagę emisję gazów cieplarnianych, zjawisko El Niño czy wpływ erupcji wulkanicznych, wciąż niewyjaśnione pozostaje około 0,2 stopnia wzrostu. Uczeni z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (AWI) zaproponowali na łamach Science wyjaśnienie tego zjawiska. Według nich te brakujące 0,2 stopnia to skutek zmniejszającego się albedo – zdolności do odbijania światła – Ziemi.
      Uczeni z AWI, we współpracy ze specjalistami od modelowania klimatu z European Centre for Medium-Range Weather Forecasts (ECMWF), przeanalizowali dane satelitarne z NASA oraz ponownie przyjrzeli się danym ECMWF. Niektóre z nich pochodziły nawet z roku 1940. Na ich podstawie sprawdzili jak przez ostatnie dziesięciolecia zmieniał się globalny budżet energetyczny oraz pokrywa chmur na różnych wysokościach. Zarówno w danych NASA, jak i ECMWF, rok 2023 wyróżniał się jako ten o najniższym albedo planetarnym. Od lat obserwujemy niewielki spadek albedo. Ale dane pokazują, że w 2023 roku albedo było najniższe od co najmniej roku 1940, mówi doktor Thomas Rackow.
      Zmniejszanie się albedo Ziemi naukowcy obserwują od lat 70. Częściowo za zjawisko to odpowiadało zmniejszanie się pokrywy lodowej oraz ilości lodu pływającego w Arktyce. Mniej śniegu i lodu oznacza, że mniej promieniowania słonecznego jest odbijane przez Ziemię. Od 2016 roku efekt ten został wzmocniony przez zmniejszanie się zasięgu lodu pływającego w Antarktyce. Jednak nasze analizy pokazywały, że spadek albedo w regionach polarnych odpowiada jedynie za 15% całkowitego spadku albedo, dodaje doktor Helge Goessling. Albedo zmniejszyło się też jednak w innych regionach planety i gdy naukowcy wprowadzili dane do modeli budżetu energetycznego stwierdzili, że gdyby nie spadek albedo od grudnia 2020, to średni temperatury w roku 2023 byłyby o 0,23 stopnie Celsjusza niższe.
      Na zmniejszenie albedo wpłynął przede wszystkim zanik nisko położonych chmur z północnych średnich szerokości geograficznych i z tropików. Szczególnie silnie zjawisko to zaznaczyło się na Atlantyku, co wyjaśniałoby, dlaczego był on tak niezwykle gorący. Pokrywa chmur na średnich i dużych wysokościach nie uległa zmianie lub zmieniła się nieznacznie.
      Chmury na wszystkich wysokościach odbijają światło słoneczne, przyczyniając się do ochłodzenia planety. Jednak te, które znajdują się w wysokich, chłodnych warstwach atmosfery, tworzą rodzaj otuliny, który zapobiega ucieczce w przestrzeń kosmiczną ciepła wypromieniowywanego przez Ziemię. Zatem utrata chmur położonych niżej oznacza, że tracimy część efektu chłodzącego, wpływ ocieplający chmur pozostaje.
      Rodzi się więc pytanie, dlaczego niżej położone chmury zanikły. Częściowo przyczyną może być mniejsza antropogeniczna emisja aerozoli, szczególnie z powodu narzucenia bardziej restrykcyjnych norm na paliwo używane przez statki. Aerozole z jednej strony biorą udział w tworzeniu się chmur, z drugiej zaś – same odbijają promieniowanie słoneczne. Jednak badacze uważają, że czystsze powietrze to nie wszystko i mamy do czynienia z bardziej niepokojącym zjawiskiem.
      Ich zdaniem to sama zwiększająca się temperatura powoduje, że na mniejszych wysokościach formuje się mniej chmur. Jeśli zaś znaczna część spadku albedo to – jak pokazują niektóre modele klimatyczne – skutek sprzężenia zwrotnego pomiędzy globalnym ociepleniem a nisko położonymi chmurami, to w przyszłości powinniśmy spodziewać się jeszcze bardziej intensywnego ocieplenia. Średnia temperatura na Ziemi może przekroczyć granicę wzrostu o 1,5 stopnia Celsjusza w porównaniu z epoką przedprzemysłową wcześniej, niż sądziliśmy, dodaje Goessling.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA poinformowała o opóźnieniu dwóch kolejnych misji załogowych, jakie mają się odbyć w ramach programu Artemis. Artemis II, w ramach której ludzie mają polecieć poza orbitę Księżyca, została przesunięta z września 2025 na kwiecień 2026, a lądowanie człowieka na Księżycu – Artemis III – przesunięto z końca 2026 na połowę 2027. Opóźnienie związane jest z koniecznością dodatkowych prac przy osłonie termicznej kapsuły załogowej Orion.
      Decyzję o opóźnieniu podjęto po zapoznaniu się z wnioskami ze śledztwa w sprawie niespodziewanej utraty przez osłonę Oriona części niecałkowicie spalonego materiału w czasie wchodzenia w atmosferę Ziemi podczas bezzałogowej misji Artemis I. Mimo to misja Artemis II zostanie przygotowana z wykorzystaniem osłony już zamocowanej do Oriona. Badania wykazały bowiem, że osłona dobrze zabezpieczy pojazd oraz załogę. NASA zmieni jednak nieco trajektorię lądowania, by zmniejszyć obciążenie osłony. A trzeba przyznać, że musi ona wiele wytrzymać. Jej zadaniem jest uchronienie kapsuły przed temperaturami dochodzącymi do 2700 stopni Celsjusza, jakie pojawiają się w wyniku tarcia o atmosferę. Po wejściu w nią pojazd pędzi z prędkości ponad 40 tysięcy km/h i za pomocą siły tarcia zostaje spowolniony do ponad 500 km/h. Dopiero przy tej prędkości rozwiną się spadochrony i kapsuła łagodnie wyląduje na powierzchni Pacyfiku.
      Przez kilka ostatnich miesięcy NASA i niezależny zespół ekspertów szukali przyczyn, dla których podczas misji Artemis I niecałkowicie spalony materiał z osłony uległ zużyciu w inny sposób, niż przewidziany. Przeprowadzono ponad 100 różnych testów, które wykazały, że gazy, powstające wewnątrz materiału osłony w wyniku oddziaływania wysokiej temperatury, nie mogły wystarczająco szybko się ulatniać, co spowodowało popękanie części materiału i jego odpadnięcie. Mimo tego osłona spełniała swoje zadanie. Czujniki wewnątrz kapsuły wykazały, że temperatura pozostała stabilna i komfortowa dla człowieka.
      Teraz, na podstawie badań osłony z misji Artemis I, inżynierowie przygotowują osłonę dla misji Artemis III, dbając o to, by gazy mogły z niej równomiernie uchodzić. Zanim jednak dojdzie do misji Artemis III, wystartuje Artemis II, w ramach której ludzie odlecą od Ziemi na największą odległość w historii. Zadaniem tej 10-dniowej misji będzie przetestowanie systemów podtrzymywania życia, sprawdzenie mechanizmów ręcznego sterowania kapsułą oraz zbadanie, w jaki sposób astronauci wchodzą w interakcje z urządzeniami kapsuły.
      Dotychczas kapsuła Orion dwukrotnie opuszczała Ziemię. Po raz pierwszy w 2014 roku, gdy na krótko trafiła na orbitę i po raz drugi w roku 2022, gdy w ramach 25-dniowej misji bezzałogowej NASA wysłała ją na orbitę Księżyca.
      Przesunięcie misji Artemis III zwiększa też prawdopodobieństwo, że kolejne opóźnienia nie będą konieczne. Podczas misji bowiem wykorzystany zostanie górny człon rakiety Starship firmy SpaceX, który posłuży do lądowania na Księżycu. Starship jest wciąż rozwijana, dotychczas przeprowadzono jedynie 6 jej testów. Decyzja NASA o opóźnieniu misji daje więc przy okazji firmie Elona Muska więcej czasu na dopięcie wszystkiego na ostatni guzik.
      Pomimo opóźnienia USA wciąż wyprzedzają Chiny pod względem najbliższej planowej misji załogowej na Księżyc. Państwo Środka chce bowiem wysłać astronautów na Srebrny Glob około 2030 roku. Ten pośpiech ma podłoże nie tylko ambicjonalne. NASA chce być pierwsza po to, by Chiny nie mogły ustalać zasad pracy na Księżycu. Obecny szef NASA twierdzi bowiem, że nie można wykluczyć, iż gdyby pierwsi wylądowali Chińczycy, to mogliby spróbować zakazać lądowania innym w tym samym regionie.
      Oba kraje planują lądowanie w pobliżu południowego bieguna Srebrnego Globu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
      W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
      Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
      Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
      Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
      Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
      Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
      Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
      Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...