
Rośliny słyszą zbliżającego się owada
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Singapuru opracowali filtr do opalania bazujący na pyłku roślin z rodzaju Kamelia. Chroni on przed szkodliwym promieniowaniem ultrafioletowym równie dobrze jak obecnie stosowane filtry bazujące na tlenku tytanu czy tlenku cynku, ale w przeciwieństwie do nich jest nieszkodliwy dla środowiska. Podczas testów laboratoryjnych komercyjne olejki powodowały blaknięcie koralowców już po 2 dniach, a po 6 dniach koralowce zamierały. Tymczasem gdy koralowce miały kontakt z filtrem na pyłku roślinnym, pozostawały zdrowe przez cały 60-dniowy czas testów.
Ludzka działalność szkodzi środowisku naturalnemu na wiele sposobów. Nawet tak, wydawałoby się niewinne, czynności jak opalanie się, niosą ze sobą opłakane konsekwencje. Szacuje się, że każdego roku do oceanów trafia od 6000 do 14 000 ton olejków do opalania, zmywanych przez wodę z ciał plażowiczów. A to tylko jedna niezliczonej liczby szkodliwych substancji, którymi na co dzień zanieczyszczamy środowisko, w którym sami w końcu żyjemy.
Wiemy, że pyłek jest w naturalny sposób odporny na promieniowanie ultrafioletowe, a jego osłonka musi chronić zawartość przed szkodliwymi czynnikami zewnętrznymi, w tym światłem słonecznym. Celem naszych badań było stworzenie sposobu na przetworzenie pyłku w żel, by łatwo nakładać go na skórę, mówi profesor Cho Nam Joon z Uniwersytetu Technologicznego Nanyang w Singapurze. Chcieliśmy opracować tani i efektywny olejek do opalania, który nie alergizuje ludzi i jest przyjazny dla środowiska. Wykorzystaliśmy tutaj naszą dogłębną wiedzę z dziedziny inżynierii i inżynierii materiałowej, dzięki czemu stworzyliśmy rozwiązanie korzystne zarówno dla ludzi, jak i dla Ziemi, dodaje uczony.
Filtry do opalania chronią skórę przed szkodliwym promieniowaniem odbijając lub pochłaniając ultrafiolet. Jednak wiele komercyjnie dostępnych filtrów jest szkodliwych dla środowiska. Pyłek chroniony jest przez sporopoleninę. To jeden z najbardziej odpornych biopolimerów. Jest tak odporny, że znaleziono sporopoleninę sprzed milionów lat. Ze względu na tę wyjątkową odporność, niezwykłą stabilność chemiczną i wytrzymałość na działanie odczynników chemicznych, budowa i skład sporopoleniny są słabo poznane. Nie potrafimy otrzymać jej syntetycznie.
Profesor Cho i jego zespół opracowali przyjazny środowisku proces wypłukiwania zewnętrznych warstw pyłku i zamiany ich na żel. Nakłada się go niezwykle cienką, przezroczystą warstwą.
Podczas eksperymentów na zwierzętach uczeni wykazali, że żel bardzo dobrze chroni skórę przed uszkodzeniami przez światło ultrafioletowe. Porównanie z obecnie dostępnymi komercyjnymi filtrami wykazało, że żel oparty na pyłku jest równie skuteczny, jeśli nie skuteczniejszy, niż filtry zawierające różnego typu chemikalia i minerały.
Nowy żel dobrze chronił przed wysoką temperaturą, przez 20 minut utrzymując skórę o 5 stopni chłodniejszą. Wskaźnik ochrony przeciwsłonecznej (SPF) żelu wynosi 30, co znaczy, że blokuje on 97% promieniowania UV.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wiadomo że rośliny i zwierzęta wydają dźwięki, reagują na nie i za ich pomocą się komunikują. Komunikacja taka zachodzi też pomiędzy zwierzętami a roślinami i odwrotnie. Czy jednak organizmy należące do innych królestw domeny eukariontów w jakiś sposób reagują na dźwięki? Okazuje się, że tak. Reakcję taką zauważono u drożdży piwowarskich. Co więcej można to wykorzystać w produkcji złocistego napoju.
Naukowcy z nowozelandzkiego Uniwersytetu w Otago donoszą, że odtwarzanie szumu białego – rodzaju szumu akustycznego – podczas warzenia piwa pozwala skrócić proces produkcji złocistego napoju. Z badań przeprowadzonych pod kierunkiem doktora Parise'a Adadiego wynika, ze dzięki białemu szumowi proces fermentacji można skrócić o 21 do 31 godzin bez pogarszania jakości napoju. W ten sposób browary mogą znacząco zwiększyć produkcję.
Naukowcy wykorzystali aktuator liniowy, który generował biały szum w zakresie 800–2000 Hz o głośności 140 dB. Zastosowanie stymulacji dźwiękowej zwiększyło wzrost drożdży poprzez utrzymywanie wyższego stężenia komórek drożdży w zawiesinie. Energia dźwiękowa pobudzała procesy komórkowe i szlaki metaboliczne, wzmacniając wzrost i aktywność drożdży. To prowadziło do szybszego zużywania cukrów z brzeczki i wytwarzania alkoholu, ale co istotne – nie zmieniało w sposób istotny składu smakowego gotowego piwa, stwierdził doktor Adadi.
Szczegółowy opis eksperymentu został opublikowany na łamach Food Research International.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ewolucja roślin i ich zapylaczy jest zwykle badana pod kątem sygnałów optycznych i chemicznych. Nauka analizowała, jak i co widzą zapylacze, jakie sygnały chemiczne odbierają oraz w jaki sposób rośliny wykorzystują kolor, kształt oraz substancje chemiczne, by przyciągnąć zapylaczy. Nauka wie też, że zarówno zwierzęta, jak i rośliny, są zdolne do wytwarzania oraz odbierania sygnałów akustycznych. Francesca Barbero z Uniwersytetu w Turynie oraz jej zespół składający się z entomologów, inżynierów dźwięku i fizjologów roślin, postanowili sprawdzić, czy w jakiś sposób rośliny i zapylacze mogą się nawzajem słyszeć i na siebie reagować.
Naukowcy odtwarzali w pobliżu rosnącego wyżlinu (Antirrhinum) dźwięki wydawane przez zapylającą go makatkę czerwoną i sprawdzali reakcję rośliny. Okazało się, że na sam dźwięk skrzydeł pszczoły, wyżlin zwiększał produkcję cukrów i nektaru, zmieniając przy tym ekspresję genów odpowiedzianych za transport i produkcję tych składników. Zdaniem badaczy, jest to świetny przykład koewolucji roślin i zapylaczy.
Zdolność do odróżniania od siebie zbliżających się zapylaczy na podstawie sygnałów akustycznych przez nich generowanych może być strategią adaptacyjną. Reagując na sygnał zapylacza – na przykład tego najbardziej efektywnego – rośliny mogą zwiększyć swój sukces reprodukcyjny, jeśli doprowadzą do odpowiedniej modyfikacji jego zachowania, mówi Barbero. Dostarczając owadowi więcej cukru czy nektaru, roślina może – na przykład – skłonić go, by dłużej na niej pozostał.
Widzimy tutaj, że dźwięk wydawany przez zapylacza, wpływa na zachowanie rośliny. O wiele trudniej jest sprawdzić oddziaływanie w drugą stronę – czy dźwięki roślin mogą wpłynąć na owady. Na przykład czy mogą one przyciągać wybranych zapylaczy. Jeśli okaże się, że tak, to dźwięki można będzie wykorzystywać do przyciągania zapylaczy do upraw.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Produkty pszczele – miód, pyłek i propolis – od tysiącleci używane są w ludowej medycynie. Nowoczesne metody naukowe pozwalają na zweryfikowanie ich skuteczności czy znalezienie nowych zastosowań. Pojawiło się już wiele badań dowodzących pozytywnego wpływu produktów pszczelich na gojenie ran. Jak jednak w praktyce zastosować miód czy propolis i udostępnić je jak największej liczbie ludzi? Z problemem tym zmierzyli się naukowcy z kilku tureckich uczelni wyższych.
Na łamach Biofunctional Materials opublikowali oni artykuł Bee products loaded polymeric films as a potential dressing material for skin treatments. W ramach swoich badań przyjrzeli się czy i w jaki sposób właściwości produktów pszczelich zmieniają się, gdy zostaną zintegrowane z naturalnymi polimerami. Połączenie miodu, propolisu czy pyłku z chitosanem i żelatyną w celu stworzenia opatrunków, mogło przecież zmienić produkty pszczele tak, że stracą swoje pożądane właściwości.
Z przeprowadzonych badań wynika, że najbardziej pożądaną cechą miodu w opatrunkach jest wysoka retencja wody, którą można wykorzystać podczas krótkotrwałego procesu regeneracji uszkodzonej skóry. Z kolei pyłek i propolis w biopolimerach wykazywały silne właściwości przeciwbakteryjne, a materiały wytworzone z ich użyciem były były trwałe i miały wysoką jakość, dzięki czemu nadawały się do produkcji materiałów biomedycznych. Tureccy naukowcy stwierdzili również, że można kontrolować ich uwalnianie z materiału, który je zawiera, co czyni je tym bardziej przydatnymi w leczeniu ran.
Co więcej, zarówno chitosan jak i produkty pszczele mogą mieć kontakt z żywnością, a to oznacza, że pyłek czy propolis zintegrowane z chitosanem mogą posłużyć do produkcji opakowań w przemyśle spożywczym. Takie opakowania mogą być szczególnie przydatne do tych rodzajów żywności, które są szczególnie podatne na zepsucie pod wpływem bakterii, jak mięso czy sery.
Trzeba tutaj podkreślić, że autorzy badań nie brali pod uwagę biokompatybilności polimerów z produktami pszczelimi, nie eksperymentowali z pakowaniem w nie żywności. Skupili się wyłącznie na aktywności biologicznej, morfologii, strukturze chemicznej, retencji wody czy przyleganiu takich materiałów do skóry. O tym, czy materiały takie można rzeczywiście zastosować w opatrunkach i opakowaniach, rozstrzygną inne badania.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.