Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wirus podsłuchuje bakterie, by zdecydować, kiedy je zabić

Rekomendowane odpowiedzi

Profesor Bonnie Bassler i student Justin Silpe zidentyfikowali wirusa VP882, który może podsłuchać bakterie i zdecydować o ich zabiciu. Wirus skutecznie atakuje E. coli oraz salmonellę i bakterię cholery.

Profesor Bassler zrewolucjonizowała mikrobiologię odkrywając, że bakterie porozumiewają się między sobą za pomocą cząsteczek związków chemicznych (quorum sensing).

"Pomysł, by wirus wykrywał molekuły używane przez bakterie do komunikacji jest całkowicie nowy. Justin odkrył pierwszy tego typu przypadek, a później tak zmodyfikował wirusa, by ten odbierał różne sygnały, nie tylko molekuły komunikacyjne, i wówczas wirus zabija na żądanie", mówi uczona. Szczegółowy opis pracy ukaże się 10 stycznie na łamach pisma Cell.

Jak mówi uczona, wirus może podjąć jedną z dwóch decyzji – pozostać z gospodarzem lub go zabić. Może zatem żyć wewnątrz gospodarza i unikać jego układu odpornościowego lub też namnożyć się i w ten sposób zabić gospodarza, wypuszczając setki i tysiące swoich potomków w kierunku innego gospodarza. Jednak zabicie obecnego gospodarza jest ryzykowne. Jeśli bowiem w pobliżu nie będzie innego, to wszystkie wirusy zginą. Tymczasem okazuje się, że VP882 potrafi uniknąć tego ryzyka. Wirus nasłuchuje komunikacji pomiędzy bakteriami, świadczącej o tym, że w pobliżu są inne bakterie. To zwiększa prawdopodobieństwo, że gdy wirus się namnoży i zabije gospodarza, jego potomstwo znajdzie kolejną ofiarę.

Ten artykuł opisuje relacje pomiędzy wirusami a ich gospodarzami z zupełnie innej perspektywy, mówi profesor Graham Hatfull. Po raz pierwszy dowiadujemy się, że gdy bakteriofag jest w stanie lizogenicznym (uśpionym) to nie śpi on całkowicie, ale czujnie drzemie z otwartym jednym okiem i nasłuchującymi uszami, gotów do reakcji, i gdy tylko usłyszy odpowiednie sygnały, szybko odpowiada na zmiany w środowisku.

Jason odkrył, że komunikacja przekracza granice królestw w systematyce. Zapoczątkował całkowicie nowe pole badań. Byłoby bowiem bez sensu przyjąć założenie, że to jedyny istniejący przykład komunikacji pomiędzy królestwami. Justin odkrył pierwszy przypadek, a po jego zauważeniu zaczął szukać głębiej. Znalazł wiele wirusów, które mają podobne możliwości. Być może nie wszystkie z nich są w stanie wykryć komunikację pomiędzy bakteriami, ale jasnym się stało, że wirusy zbierają informacje na temat swojego gospodarza i wykorzystują ją, by go zabić, stwierdza profesor Bassler.

Gdy Silpe odkrył, że VP882 może podsłuchiwać bakterie, zaczął prowadzić eksperymenty, które miały na celu wysłanie wirusowi sygnału, by zabijał bakterie na żądanie. Wirusy zabijające bakterie, bakteriofagi, znane są od dawna i używane w medycynie. VP882 jest pierwszym znanym bakteriofagiem, który nasłuchuje komunkacji pomiędzy bakteriami, by zdecydować, kiedy najlepiej zabić gospodarza.

Ponadto, jak zauważa profesor Bassler, jest on bardzo obiecującym narzędziem terapeutycznym, gdyż nie działa jak typowy wirus. Większość wirusów potrafi zarazić tylko konkretne rodzaje komórek. Wirusy grypy zarażają komórki płuc, wirus HIV atakuje tylko specyficzne komórki układu odpornościowego. VP882 jest inny. Może on zarażać bardzo dużo komórek. Slipe przetestował go już na bakteriach cholery (Vibrio cholerae), salmonelli oraz E. coli. Bakterie te przez setki milionów lat ewoluowały oddzielnie od siebie. Fakt, że VP882 potrafi je wszystkie zarazić wskazuje, że zarazi on też wiele innych bakterii.

Profesor Hatfull zauważa, że VP882 może stać się niezwykle przydatnym narzędziem do walki z infekcjami, szczególnie w dobie rosnącej antybiotykooporności. Wirusowy zabójca powinien nie tylko poradzić sobie z bakteriami opornymi na antybiotyki, ale może nawet spowolnić pojawianie się takich szczepów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czeka nas przełom na miarę wynalezienia antybiotyków?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, raweck napisał:

Czeka nas przełom na miarę wynalezienia antybiotyków?

Albo World War Z 2 :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Centrum Biologii Czeskiej Akademii Nauk odkryli 40 nieznanych dotychczas wirusów występujących w wodzie pitnej, które infekują mikroorganizmy morskie. Pierwszy z nich, szczegółowo opisany Budvirus – którego nazwa pochodzi od Czeskich Budziejowic – należy do grupy gigantycznych wirusów (niektóre z nich są większe od bakterii) i atakuje jednokomórkowe glony, kryptomonady (kryptofity). Okazało się, że Budvirus odgrywa olbrzymią rolę w naturze, kontrolując zakwit glonów i utrzymując równowagę w środowisku wodnym.
      Wszystkie wspomniane wirusy zostały znalezione w zbiorniku Římov w pobliżu Czeskich Budziejowic. Jest on regularnie monitorowany od pięciu dekad, co czyni go jednym z najlepiej zbadanych zbiorników słodkowodnych w Europie.
      W jednej kropli słodkiej wody może znajdować się nawet milion bakterii i 10 milionów wirusów. Pomimo rozwoju nauki, wciąż nie znamy większość z tych mikroorganizmów. Jesteśmy w stanie stopniowo je poznawać dzięki technikom sekwencjonowania DNA. Wyodrębniamy cały materiał genetyczny znajdujący się w próbce wody, przeprowadzamy jego analizę i w ten sposób śledzimy organizmy obecne w wodzie. Tak zdobywamy informacje o nowych wirusach i bakteriach, wyjaśnia Rohit Ghai, dyrektor Laboratorium Ekologii i Ewolucji Mikroorganizmów w Centrum Biologii Czeskiej Akademii Nauk.
      Na ślad Budvirusa naukowcy wpadli wiosną, w czasie gwałtownego zakwitu glonów w wodzie. Wiedzieli, że dzięki drapieżnikom żywiącym się glonami, takim jak pierwotniaki czy wrotki, oraz zmniejszeniu się dostępności składników odżywczych, rozkwit wkrótce zostanie powstrzymany i ilość glonów się zmniejszy. Teraz udało się im potwierdzić, że Budvirus odgrywa olbrzymią rolę w powstrzymywaniu zakwitu glonów, a jego działalność jest szczególnie ważna wiosną. Budvirus jest pierwszym znanym nam wirusem, który infekuje kryptomonady z rodzaju Rhodomonas, jednego z najbardziej rozpowszechnionych glonów. Dlatego też możemy przypuszczać, że reprezentuje on grupę wirusów powszechną w zbiornikach słodkowodnych na całym świecie, stwierdziła Helena Henriques Vieira.
      Kapsyd Budvirusa ma kształt 20-ścianu o średnicy 200 nanometrów, jest więc 10-krotnie większy od kapsydu przeciętnego wirusa. Jego genom koduje ponad 400 białek, a funkcja połowy z nich nie jest obecnie znana.
      Ekosystemy słodkowodne są niezwykle dynamiczne, zachodzi tam wiele interakcji pomiędzy organizmami od bakterii i wirusów, przez pierwotniaki po ryby. Interakcje te mają olbrzymi wpływ na równowagę środowiska i jego odporność na ekstremalne zmiany. Ważne jest, byśmy dokładnie rozumieli rolę tych organizmów i ich wzajemne interakcje. Dzięki temu, gdy w wodzie będą zachodziły nieprzewidziane zmiany, będziemy wiedzieli, co się dzieje, dodaje Ghai.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
      Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
      Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
      Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
      Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Endometrioza to poważna choroba, która dotyka do 10% kobiet w wieku rozrodczym. Jej najbardziej widocznym objawem jest ból, niejednokrotnie tak mocny i długotrwały, że uniemożliwia normalne funkcjonowanie. W wyniku choroby komórki wyściółki macicy, endometrium, przemieszczają się po organizmie osadzając się i rozrastając w różnych miejscach, niszcząc organizm i życie kobiety. Choroba ta jest jedną z najczęstszych przyczyn niepłodności kobiet. Mimo to, wciąż nie znamy jej przyczyn.
      W ostatnim czasie coraz więcej uwagi zwraca się na potencjalną rolę mikroorganizmów w rozwoju endometriozy. Rozwój endometriozy próbuje się powstrzymywać za pomocą terapii hormonalnych i zabiegów chirurgicznych. Najczęściej są to jednak półśrodki, a choroba nawraca przez kilkadziesiąt lat, aż do okresu menopauzy. Chcielibyśmy znaleźć nowe sposoby leczenia. Jednak najpierw musimy się dowiedzieć, dlaczego ludzie cierpią na endometriozę, mówi specjalizująca się w biologii nowotworów Yutaka Kondo z Uniwersytetu w Nagoi.
      Pani Kondo wraz ze swoim zespołem przebadała tkankę endometrium 155 Japonek. I okazało się, że u 64% kobiet z endometriozą występują mikroorganizmy z rodzaju Fusobacterium. U kobiet zdrowych bakterie te znaleziono jedynie u 7% badanych. Tymczasem wiemy, że Fusobakterium, często występujące w ustach, jelitach i pochwie może powodować różne choroby, jak np. choroby przyzębia.
      Naukowcy postanowili sprawdzić, czy Fusobacterium może mieć wpływ na rozwój endometriozy. Dlatego też przeszczepili tkankę endometrium od jednych do jamy brzusznej innych myszy. Zgodnie z oczekiwaniami, w ciągu kilku tygodni u myszy pojawiły się blizny typowe dla endometriozy. Okazało się, że jest ich więcej i są one większe u tych myszy, którym jednocześnie przeszczepiono Fusobacterium. Myszy zaczęto więc leczyć, podawanymi dopochwowo, antybiotykami – metronidazolem lub chloramfenikolem. Doprowadziło to do zmniejszenia liczby i rozmiarów ognisk endometriozy. Japończycy prowadzą obecnie badania kliniczne na kobietach z endometriozą, by sprawdzić, czy podawanie antybiotyków przyniesie im przynajmniej częściową ulgę.
      Badania są obiecujące, ale mają poważne ograniczenia. Myszy nie są bowiem dobrymi modelami do badań nad endometriozą, gdyż ani nie menstruują, ani nie tworzą się u nich spontanicznie blizny spowodowane endometriozą. Dlatego też konieczne jest prowadzenie większej liczby badań na ludziach. Ponadto Japończycy skupili się na badaniu blizn tworzących się na jajnikach, tymczasem u ludzi w wyniku endometriozy mogą powstawać one w całym organizmie i na wszystkich organach wewnętrznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Metale ziem rzadkich wykorzystujemy w smartfonach, telewizorach, silnikach elektrycznych czy turbinach wiatrowych. Są one szeroko rozpowszechnione w skorupie ziemskiej. Jednak występują w tak niewielkiej koncentracji, że ich pozyskanie nie jest proste. To proces bardzo energochłonny, składający się z setek kroków oraz wymagający użycia toksycznych chemikaliów. Okazuje się jednak, że można go uprościć, uczynić tańszym, czystszym i bezpieczniejszym dzięki bakteriom wyizolowanym właśnie z pączków dębu szypułkowego.
      Naukowcy z Pennsylvania State University odkryli mechanizm, za pomocą którego bakterie mogą selektywnie wybierać pomiędzy metalami ziem rzadkich. Zbadali, jak ten mechanizm działa i opracowali metodę szybkiego i efektywnego oddzielania podobnych pierwiastków w temperaturze pokojowej. Metoda ta może przyczynić się do powstania bardziej efektywnych, tańszych i przyjaznych dla środowiska technologii pozyskiwania i recyklingu pierwiastków ziem rzadkich.
      Procesy biologiczne potrafią odróżnić metale ziem rzadkich od wszystkich innych metali, a teraz wykazaliśmy, że potrafią też odróżniać od siebie poszczególne metale ziem rzadkich, decydując, który jest dla nich użyteczny, a który nie, mówi główny autor badań, profesor Joseph Cotruvo. Wykazaliśmy, jak wykorzystać te właściwości do pozyskiwania i oddzielania pierwiastków ziem rzadkich. Niezależnie od tego, czy wydobywasz metale ziem rzadkich ze skał, czy też z poddawanych recyklingowi urządzeń, musisz je od siebie oddzielić, by uzyskać czysty metal. Nasza metoda, przynajmniej teoretycznie, może znaleźć zastosowanie niezależnie od metody pozyskiwania pierwiastka, dodaje uczony.
      Do grupy pierwiastków ziem rzadkich zaliczamy 15 lantanowców oraz iterb i skand. Są one podobne pod względem chemicznym, mają podobne rozmiary i często występują razem. Znajdują jednak różne zastosowania technologiczne.
      Obecnie podczas separacji poszczególnych pierwiastków ziem rzadkich wykorzystuje się olbrzymie ilości toksycznych chemikaliów, takich jak nafta czy fosfoniany. Proces separacji składa się nawet z setek poszczególnych kroków, koniecznych do uzyskania czystego metalu. Jeden problem to oddzielenie tych pierwiastków od skał. Gdy już to się uda, mamy drugi problem jakim jest oddzielenie poszczególnych metali od siebie. To największe i najbardziej interesujące wyzwanie, gdyż pierwiastki te są do siebie podobne. My wzięliśmy naturalnie występującą proteinę, którą nazywamy lanmoduliną (LanM) i przygotowaliśmy ją tak, by rozróżniała te pierwiastki, wyjaśnia Cotruvo.
      Cotruvo i jego koledzy wiedzieli, że natura od milionów lat potrafi wykorzystywać pierwiastki ziem rzadkich. Dlatego właśnie w naturze poszukiwali rozwiązania problemu. Przed sześciu laty wyizolowali lanmodulinę z jednej z bakterii i wykazali, że 100 milionów razy lepiej łączy się ona z lantanowcami niż z innymi metalami. Później udowodnili, że można ją wykorzystać do uzyskania pierwiastków ziem rzadkich z mieszaniny, w której znajduje się wiele innych metali. Jednak ta pierwsza lanmodulina radziła sobie znacznie gorzej z zadaniem odróżniania poszczególnych pierwiastków ziem rzadkich od siebie.
      Podczas najnowszych badań Cotruvo i jego zespół znaleźli setki naturalnych protein mniej więcej podobnych do pierwszej zidentyfikowanej przez sobie lanmoduliny. Jednak skupili się na jednej, która była wystarczająco różna – różnice dochodziły do 70% – spodziewając się, że będzie ona miała nieco różne właściwości. Wybrana przez nich lanmodulina występuje u bakterii Hansschlegelia quercus wyizolowanej z pączków dębu szypułkowego.
      Okazało się, że gdy lanmodulina z tej bakterii łączy się z lżejszymi lantanowcami, jak neodym, tworzy silne dimery z identycznymi fragmentami lanmoduliny. Gdy zaś łączy się z cięższymi lantanowcami, jak dysproz, woli się nie łączyć, pozostając monomerem. To było zaskoczenie, gdyż pierwiastki te są bardzo podobnych rozmiarów. Tymczasem ta lanmodulina jest zdolna do rozróżnienia wielkości w skalach dla nas niewyobrażalnych, wynoszących bilionowe części metra. Wyczuwa różnice mniejsze niż 1/10 średnicy atomu, zachwyca się Cotruvo.
      Gdy naukowcy szczegółowo przeanalizowali wpływ łączenia się z lantanowcami na tworzenie dimerów przez lanmodulinę, okazało się, że wszystko zależy od pojedynczego aminokwasu, który zajmuje inną pozycję przy łączeniu się z lekkim lantanowcem niż podczas łączenia się z cięższym lantanowcem. Pozycja tej proteiny decyduje o interakcji z innym monomerem, więc i o preferencji co do tworzenia dimerów lub pozostaniu monomerem. Gdy naukowcy usunęli ten aminokwas z lanmoduliny, proteina znacznie gorzej radziła sobie z odróżnianiem poszczególnych lantanowców.
      Uzbrojeni w tę wiedzę naukowcy Penn State podjęli współpracę z uczonymi z Lawrence Livermore National Laboratory i wykazali, że lanmodulinę można wykorzystać do oddzielenia od siebie neodymu i dysprozu, najważniejszych składników magnesów stałych. A można to uczynić w jednym kroku, w temperaturze pokojowej, bez wykorzystywania żadnych organicznych rozpuszczalników.
      Nie jesteśmy pierwszymi, którzy zauważyli, że dimeryzacja może być metodą na oddzielanie metali, szczególnie za pomocą syntetycznych molekuł. Jednak jako pierwsi zaobserwowaliśmy takie zjawisko występujące w naturze w odniesieniu do lantanowców. To badania podstawowe, które potencjalnie można wykorzystać w przemyśle. Odkrywamy sekrety natury i uczymy się od niej, jak być lepszymi chemikami, dodaje Cotruvo. Zdaniem uczonego, najnowsza praca to dopiero początek. Cotruvo uważa, że z czasem nauczymy się rozwiązywać najtrudniejszy z problemów – efektywnie oddzielać od siebie pierwiastki ziem rzadkich, które bezpośrednio ze sobą sąsiadują w układzie okresowym.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...