Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Tlen był produkowany na Ziemi o miliard lat wcześniej niż sądzimy?

Recommended Posts

Mikroorganizmy produkujące tlen w procesie fotosyntezy mogły istnieć na Ziemi co najmniej miliard lat wcześniej, niż dotychczas sądzono. Najnowsze odkrycie może zmienić nasze spojrzenie na ewolucję życia na Ziemi oraz na to, jak mogło ono ewoluować na innych planetach.

Na Ziemi tlen jest niezbędny do powstania bardziej złożonych form życia, które wykorzystują go w procesie produkcji energii.
Przed około 2,4 miliarda lat temu na Ziemi doszło katastrofy tlenowej. To nazwa wielkich przemian środowiskowych na Ziemi, których przyczyną było pojawienie się dużych ilości tlenu w atmosferze.

Część naukowców uważa, że cyjanobakterie, które dostarczyły tlen do atmosfery, pojawiły się stosunkowo niedługo przed katastrofą tlenową. Jednak, jako, że cyjanobakterie wykorzystują dość złożony mechanizm fotosyntezy, podobny do tej używanego obecnie przez rośliny, inni uczeni uważają, że przed cyjanobakteriami mogły istnieć inne, prostsze mikroorganizmy produkujące tlen.

Teraz naukowcy z Imperial College London poinformowali o znalezieniu dowodów na obecność fotosyntezy tlenowej na co najmniej miliard lat przed pojawieniem się cyjanobakterii.

Wiemy, że cyjanobakterie są bardzo starymi formami życia. Nie wiemy jednak dokładnie, jak starymi. Jeśli cyjanobakterie liczą sobie, na przykład, 2,5 miliarda lat, to z naszych badań wynika, że fotosynteza tlenowa zachodziła na Ziemi już 3,5 miliarda lat temu. To zaś wskazuje, że pomiędzy powstaniem Ziemi a fotosyntezą prowadzącą do powstania tlenu nie musiało minąć tak dużo czasu, jak sądziliśmy, mówi główny autor badań, doktor Tanai Cardona.

Jeśli fotosynteza tlenowa wyewoluowała wcześnie, oznacza to, że jest ona procesem, z którym ewolucja dość łatwo potrafi sobie poradzić. To zaś zwiększa prawdopodobieństwo pojawienia się jej na innych planetach i pojawienia się, wraz z nią, złożonych form życia.

Jednak stwierdzenie, kiedy na Ziemi pojawili się pierwsi producenci tlenu, jest trudne. Im starsze są skały, tym rzadziej występują i tym trudniej udowodnić, że znalezione w nich skamieniałe mikroorganizmy wykorzystywały lub wytwarzały tlen.

Zespół Cardony nie zajmował się więc skamieniałymi mikroorganizmami, a postanowił zbadać ewolucję dwóch głównych protein zaangażowanych w fotosyntezę, w wyniku której powstaje tlen.

W pierwszym etapie fotosyntezy cyjanobakterie wykorzystują światło do rozbicia wody na protony, elektrony i tlen. Pomocny jest w tym kompleks białkowy o nazwie Fotoukład II.

Fotoukład II złożony jest m.in. z homologicznych protein D1 oraz D2. W przeszłości było one identyczne, jednak obecnie są one kodowane przez różne sekwencje co wskazuje, że w pewnym momencie się rozdzieliły. Nawet wówczas, gdy były identyczne, były one w stanie prowadzić fotosyntezę tlenową. Jeśli jednak udałoby się określić moment, w którym się rozdzieliły, byłby to moment, w którym na pewno tlen powstawał na Ziemi w wyniku fotosyntezy.

W przeszłości zatem podobieństwo sekwencji genetycznych kodujących D1 i D2 wynosiło 100%, obecnie zaś kodujące je sekwencje w cyjanobakteriach i roślinach są podobne do siebie w 30%. Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent. Wyliczyli, że D1 i D2 w Fotoukładzie II ewoluowały wyjątkowo powoli. Okazało się, że musiało minąć co najmniej miliard lat, by doszło do takiej zmiany w kodującej obie proteiny sekwencji genetycznej.

Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie na długo przed pojawieniem się ostatniego przodka cyjanobakterii. Jest to zgodne z ostatnimi badaniami geologicznymi, które wskazują, że zlokalizowane gromadzenie sie tlenu było możliwe już ponad 3 miliardy lat temu. Tym samym pojawienie się cyjanobakterii i pojawienie się fotosyntezy, w wyniku której powstaje tlen, nie jest tym samym zjawiskiem. Pomiędzy oboma wydarzeniami mogło upłynąć bardzo dużo czasu. Dla nauki oznacza to wielką zmianę perspektywy, stwierdza Cardona.


« powrót do artykułu

Share this post


Link to post
Share on other sites
11 godzin temu, KopalniaWiedzy.pl napisał:

Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent.

Mogli jeszcze wykorzystać kości i wnętrzności - podobno z nich też się dobrze wróży :D

Cytat

Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie 

Bez komentarza :D

Edited by nantaniel
  • Downvote (-1) 1

Share this post


Link to post
Share on other sites

Haha! Jakie dowcipne. LOL.Rotfl.

NIE! Jednak nie.

Mógłbym zapytać które - twoim zdaniem - elementy tej pracy: https://onlinelibrary.wiley.com/doi/full/10.1111/gbi.12322  obarczone są tak dużym błędem i jakie masz podstawy, by tak twierdzić. Nie ma to jednak sensu bo wiem, że nie masz nic na obronę swojej tezy (jeśli to co napisałeś, w ogóle można tak nazwać).

Zamiast tego przetłumaczę twój komentarz z języka sarkazmu na język faktów:

12 godzin temu, nantaniel napisał:
23 godziny temu, KopalniaWiedzy.pl napisał:

Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent.

Mogli jeszcze wykorzystać kości i wnętrzności - podobno z nich też się dobrze wróży :D

Tłumaczenie: "Nie przeczytałem ani nawet nie przejrzałem pracy wspomnianych naukowców. Nie mam najmniejszego pojęcia o statystyce, biologii molekularnej i ewolucji białek. Nie potrafię sobie nawet wyobrazić, jak można datować tak dawne wydarzenia. A skoro JA nie potrafię sobie czegoś wyobrazić, to znaczy że to szarlataneria i wróżbiarstwo."

12 godzin temu, nantaniel napisał:
Cytat

Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie 

Bez komentarza :D

Ja natomiast skomentuję, bo najwyraźniej albo nie wiesz jak działa nauka, albo to ignorujesz bo tak ci pasuje do twoich z nauki heheszków.

W skrócie - mamy 2 podejścia. Pokażę łatwe do ogarnięcia przykłady na obecnie obowiązujących teoriach naukowych.

Pierwsze:

Jest rok 1905. Nazywam się Albert Einstein. Publikuję właśnie efekty mojej pracy. Stanowczo twierdzę, że... - i tu mamy STW

Drugie:

Jest rok 1909. Nazywam się Ernest Rutherford. Publikuję wyniki eksperymentu, który właśnie przeprowadziłem z kolegami. Sugerują one, że dotychczas uznawany model budowy atomu Thomsona jest błędny. Prawdopodobnie atom wygląda tak: ... - i tu mamy planetarny model atomu Rutherforda bliski już obecnie obowiązującemu.

Kilka eksperymentów więcej + trochę matematyki i w 1913 roku mamy poprawioną wersję (czyli rozwinięcie poprzedniej a nie wyrzucenie jej do kosza) - model atomu Bohra. Jeszcze kilkanaście lat i trochę mechaniki kwantowej - i mamy kolejne tuningi, itd.

Tak się pcha naukę do przodu.

Share this post


Link to post
Share on other sites
W dniu 29.11.2018 o 01:21, KopalniaWiedzy.pl napisał:

Wiemy, że cyjanobakterie są bardzo starymi formami życia. Nie wiemy jednak dokładnie, jak starymi. Jeśli cyjanobakterie liczą sobie, na przykład, 2,5 miliarda lat, to z naszych badań wynika, że fotosynteza tlenowa zachodziła na Ziemi już 3,5 miliarda lat temu. To zaś wskazuje, że pomiędzy powstaniem Ziemi a fotosyntezą prowadzącą do powstania tlenu nie musiało minąć tak dużo czasu, jak sądziliśmy, mówi główny autor badań, doktor Tanai Cardona.

Istotne jest to, czy ci pierwotni producenci tlenu posiadali nukleotyd sterujący ich funkcjami życiowymi, czy też nie.

Dlaczego?

Gdyby sterowanie za pomocą nukleotydu pojawiło się dopiero z sinicami, oznaczałoby to, że pomiędzy powstaniem protokomórek a implantacją nukleotydu podtrzymującego syntezę białek i podział komórki, upłynęło 1,3 miliarda lat. A jeżeli wcześniej, to 0,3 mld. Różnica 1 miliarda lat zmienia postrzeganie stopnia prawdopodobieństwa na powstanie życia i umacnia bądź osłabia hipotezę jedynej Ziemi.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zwierzę sprzed 380 milionów lat, które pływało w oceanach i chodziło po lądzie jest zaginionym ogniwem ewolucji ludzkiej dłoni. Elpistostege watsoni miał 1,5 metra długości, ostre kły, płaską głowę, długi pysk i niewielkie okrągłe oczy, wyglądem przypominał połączenie rekina z jaszczurką. Jednak tym, co najbardziej zainteresowało kanadyjsko-australijski zespół paleontologów były jego płetwy.
      Wszystkie cztery płetwy tego stworzenia to pierwsza znana nam skamieniałość, na której widać przydatki, które z czasem stały się kośćmi palców i umożliwiły powstanie ludzkiej dłoni.
      Stworzenie miało cztery kończyny i w każdej z nich widoczne są niezwykłe kości, przypominające kości palców. Paleontolog profesor John Long z australijskiego Flinders University mówi, że to niezwykle ważne znalezisko. Ujawnia ono bardzo ważne informacje na temat ewolucji dłoni u kręgowców. To raz pierwszy mamy bezpośredni dowód na rozwój palców w płetwie. Te kości przypominają kości występujące w kończynach większości czworonogów, dodaje.
      Skamieniałość wykopano w Miguasha National Park na wybrzeżu Quebecu. To miejsce znane z występowania licznych skamieniałości z dewonu. Sam zaś dewon zwany jest epoką ryb. Odkrycie to przesuwa też moment powstania palców do ryb. Dotychczas sądzono, że pojawiły się one znacznie później u zwierząt lądowych. Palce zaczęły rozwijać się zatem bezpośrednio przed tym, gdy ryby zaczęły wychodzić na ląd.
      Wyewoluowanie ryb z czworonogi było jednym z najbardziej istotnych wydarzeń ewolucji. Czworonogi mogły opuścić wodę i opanować lądy. Jednak do tego konieczna była zamiana płetw w dłonie i stopy. Naukowcy badający ewolucję rybich płetw w kończyny czworonogów (w tym i człowieka) badają szczątki ryb i tetrapodów z okresu środkowego i górnego dewonu. Te formy przejściowe należą do rodziny Elpistostegidae. To zwierzęta przypominające czworonogi, ale zachowały wiele cech rybich. Jednym z nich jest słynny Tiktaalik z kanadyjskiej Arktyki. To słodkowodne stworzenie osiągało około 1 metra długości, ale dotychczas znamy tylko jego częściowy szkielet.
      Współautor badań Richard Cloutier z Quebec University mówi, że pojawienie się palców zbiega się z możliwością wsparcia przez ryby ciężaru ciała w płytkich wodach lub na lądzie. Podczas naszych badań zauważyliśmy również strukturę przypominającą kość ramienną. Również ona ma pewne cechy wspólne z kością ramienną wczesnych płazów, mówi uczony.
      Elpistostege to niekoniecznie nasz przodek, ale to najbliższa znana nam skamieniałość, która jest ogniwem pomiędzy rybami a czworonogami, dodaje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z laboratorium ENIGMA (Evolution of Nanomachinest In Geospheres and Microbial Ancestors) na Rutgers University sądzą, że odtworzyli kształt pierwszej molekuły będącej wspólnym przodkiem współczesnych enzymów, które dały początek życiu na Ziemi.
      Życie to proces elektryczny. Obwód elektryczny jest katalizowany przez niewielki zestaw protein, które działają jak złożone nanomaszyny, czytamy na stronie laboratorium. ENIGMA jest współfinansowane przez NASA w ramach Astrobiology Program. Sądzimy, że życie powstało z bardzo małych klocków i pojawiło się zestaw Lego, z którego powstały komórki i bardziej złożone organizmy, jak my, mówi główny autor badań, biofizyk Paul G. Falkowski.
      Naukowcy wykonali analizę porównawczą trójwymiarowych struktur białek, by sprawdzić, czy można na tej podstawie wysnuć wnioski, co do kształtu ich wspólnego przodka. Szczególnie skupili się na podobieństwach pomiędzy kształtami, jakie w trzech wymiarach przyjmują łańcuchy aminokwasów. Poszukiwali prostego topologicznego modelu, który powiedziałby, jak wyglądały pierwsze proteiny, zanim stały się bardziej złożone i zróżnicowane.
      Odkryliśmy, że dwa powtarzające się wzorce zwijania są kluczowe dla pojawienia się metabolizmu. Prawdopodobnie te metody zawijania mają wspólnego przodka, który za pomocą duplikacji, specjalizacji i różnicowania ewoluował tak, by ułatwić transfer elektronów i katalizę na bardzo wczesnym etapie początków metabolizmu, wyjaśniają naukowcy.
      Te dwa zidentyfikowane metody zwijania to zwijanie ferredoksyny oraz konformacja Rossmanna. Naukowcy sądzą, że te dwie podstawowe struktury, które mogą mieć wspólnego przodka, posłużyły jako wzorzec dla protein sprzed ponad 2,5 miliarda lat.
      Przypuszczamy, że pierwszymi proteinami były małe, proste peptydy, któe pobierały elektrony z oceanu, atmosfery lub skał i przekazywały je innym molekułom akceptującym elektrony, mówi biolog molekularny Vikas Nanda. W reakcji transferu elektronu uwalnia się energia i energia ta napędza życie, dodaje.
      Naukowcy przyznają, że to wszystko jest jedynie hipotezą. Porównywanie kształtu obecnie istniejących protein to metoda pełna ograniczeń, która nie pozwala na uzyskanie pewności co do prawdziwości wnioskowania. Domyślamy się co mogło się wydarzyć, a nie dowodzimy, co się wydarzyło, stwierdzają autorzy badań. Jednak, jak zauważają, można tego typu badania posunąć dalej.
      Można spróbować odtworzyć w laboratorium hipotetyczne proteiny z przeszłości i sprawdzić, jak działają i jak mogą ewoluować. Naszym głównym celem jest dostarczenie NASA informacji, dzięki którym przyszłe misje naukowe będą wiedziały gdzie i jak poszukiwać życia na planetach pozasłonecznych.
      Ze szczegółami badań można zapoznać się na łamach PNAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Proteina produkowana przez ludzki układ odpornościowy może powstrzymywać koronawirusy, w tym i ten odpowiedzialny za obecną epidemię COVID-19. Do takich wniosków doszedł międzynarodowy zespół naukowy, który zauważył, że proteina LY6E znacznie ogranicza zdolność koronawirusa do rozpoczęcia infekcji. Odkrycie może prowadzić do opracowania nowego leku.
      W trakcie badań naukowcy zauważyli, że myszy, które pozbawiono genu Ly6e, stały się niezwykle podatne na infekcje zwykle bezpiecznymi dla nich dawkami koronawirusa.
      Ten silny inhibitor działa na wszystkie koronawirusy, które testowaliśmy, w tym na koronawirusy, które spowodowały epidemie SARS z 2003 roku, MERS z 2012 oraz na obecny SARS-CoV-2, mówi jeden z autorów badań, profesor John Schoggins z UT Southwestern Medical Center.
      Obecne badania to efekt wieloletniej pracy Schogginsa, który w przeszłości zauważył, że gen LY6E przyczynia się do... zwiększenia zaraźliwości wirusa grypy. W 2017 roku, gdy Schoggins pracował już na UT Southwestern, jego laboratorium odwiedziła Stephanie Pfaender ze Szwajcarii, która pracuje w laboratorium Volkera Thiela, jednego z czołowych ekspertów od koronawirusów. Przyjechała, by wykorzystać dostępne w USA techniki do poszukiwania genów, które mogłyby powstrzymywać infekcje koronawirusem. Tak doszło do obecnego odkrycia.
      Zauważyliśy, że LY6E działa na koronawirusy odwrotnie, niż na grypę. Powstrzymuje infekcję, zamiast ją wspomagać. Zaintrygowało to nas i natychmiast przystąpiliśmy do pracy, gdyż już mieliśmy przygotowany zwierzęcy model LY6E, na którym mogliśmy prowadzić badania, mówi Schoggins.
      Prace zajęły niemal 2 lata. Niemal w tym samym czasie, gdy wybuchła epidemia COVID-19 naukowcy stwierdzili, że LY6E powstrzymuje wiele różnych koronawirusów.
      Właściwości LY6E testowano na komórkach nerek naczelnych, które są często używane do badań nad koronawirusami. Naukowcy zauważyli, że LY6E zapobiega wnikaniu koronawirusów do komórek. Gdy mu się to nie uda, nie może zainfekować organizmu. Jako, że akurat wybuchła obecna epidemia, Volker Thiel zdobył próbki ludzkiego SARS-CoV-2 i skonfrontował go z LY6E. Okazało się, że i ten koronawirus jest powstrzymywany przez proteinę.
      W tym samym czasie na UT Southwestern prowadzono badania nad modelem mysim infekowanym koronawirusem. W ich wyniku stwierdzono, że gdy u myszy brakuje Ly6e jej komórki odpornościowe nie radzą sobie z infekcją, a ich liczba dastycznie spada. To tylko pogarsza sytuację.
      Schoggins podkreśla, że koronawirus użyty w modelu mysim jest znacząco różny od SARS-CoV-2. Na przykład nie atakuje on układu oddechowego, a wątrobę, powodując żółtaczkę. Ponadto zwykle nie zabija. Chyba, że myszy zostają pozbawione Ly6e, wówczas infekcja jest dla nich śmiertelna.
      Pomimo tych różnic, model mysi jest powszechnie akceptowanym modelem służącym do zrozumienia sposobu replikacji i odpowiedzi immunologicznej na infekcje. Nasze badania pokazują, jak działa niezwykle ważny gen antywirusowy. Jako, że LY6E w sposób naturalny występuje w ludzkim organizmie, mamy nadzieję, że nasze odkrycie przyczyni się do powstania środka do zwalczania infekcji koronawirusami, mówi Schoggins.
      Naukowcy przypominają, że podobna strategia leczenia jest z powodzeniem wykorzystywana w walce z HIV.
      Ze szczegółami badań można zapoznać się na łamach bioRxiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Minor Planet Centre ogłosiło właśnie, że Ziemia ma... dwa księżyce. Poza Srebrnym Globem naszą planetę okrąża jeszcze jeden księżyc, który został przechwycony przez Ziemię przed około 3 laty. Nie zobaczymy go jednak gołym okiem. Nowy księżyc ma zaledwie od 1 do 6 metrów średnicy i zbyt długo z nami nie pozostanie.
      Po raz pierwszy został on zauważony przez Theodore'a Pruyne'a i Kacpera Wierzchosa za pomocą teleskopu w Mount Lemmon Observatory w Arizonie. Uczeni spostrzegli nieznany dotychczas obiekt 15 lutego. Kolejne obserwacje pozwoliły obliczyć jego orbitę i potwierdzić, że jest on powiązany z Ziemią. W związku z tym Minor Planet Center, które pracuje w imieniu Międzynarodowej Unii Astronomicznej, oficjalnie ogłosiło odkrycie i nadało księżycowi nazwę 2020 CD3.
      Obiekt ten to niewielka asteroida, której orbita skrzyżowała się z orbitą Ziemi. Czasem takie asteroidy przelatują obok naszej planety, czasem na nią spadają. Jednak 2020 CD3 została przechwycona i stała się naszym tymczasowym księżycem. Te tak zwane „mini księżyce” pojawiają się i znikają. Autorzy jednego z wcześniejszych badań twierdzą, że w każdym momencie Ziemia posiada przynajmniej jeden dodatkowy czasowy mini-księżyc o średnicy powyżej 1 metra, który wykonuje co najmniej jeden pełny obieg wokół Ziemi.
      Żaden z tych księżyców nie zostaje na długo, gdyż oddziaływania grawitacyjne Księżyca i Słońca destabilizują ich orbity. Najprawdopodobniej krążą one wokół Ziemi najwyżej przez kilka lat, później uwalniają się spod jej wpływu i zajmują orbitę wokół Słońca.
      2020 CD3 znajduje się dalej niż Księżyc i prawdopodobnie odbywa obecnie ostatnie okrążenie wokół naszej planety.
      Poprzednim odkrytym tymczasowym księżycem Ziemi był 2006 RH120. Pomiędzy wrześniem 2006 a czerwcem 2007 czterokrotnie okrążył on Ziemię, a później poleciał swoją drogą. Obecnie znajduje się po drugiej stronie Słońca, a Ziemię ponownie odwiedzi w 2028 roku.
      Istnieje też hipoteza mówiąca, że „mini księżyce” to asteroidy, których okres orbitalny wokół Słońca wynosi dokładnie 1 rok. Czasem ich orbity zbiegają się z naszą, wówczas wydają się powiązane z Ziemią, ale w rzeczywistości krążą niezależnie wokół Słońca. Mówi się tutaj o „kwazi-satelitach” Ziemi. Jeden z nich, 1991 VG, prawdopodobnie dokonał co najmniej jednego obiegu wokół naszej planety. Niewykluczone, że powtórzy to w przyszłości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Massachusetts General Hospital (MGH) informują o odkryciu potencjalnego celu dla uniwersalnej szczepionki antywirusowej, która chroniłaby przed wieloma typami patogenów. Wyniki ich pracy sugerują, że proteina Argonaute 4 (AGO4) jest piętą achillesową wirusów.
      Opracowanie skutecznej szczepionki antywirusowej to długotrwały proces. Nawet w takiej sytuacji jak obecnie, w obliczu epidemii koronawirusa 2019-nCoV i wywoływanej przezeń choroby o nazwie Covid-19, na szczepionkę trzeba będzie czekać wiele miesięcy. Obecnie dostępne szczepionki są opracowywane bardzo długo i działają tylko na określony szczep wirusa, co oznacza, że ludzie nie są chronieni przed innymi wirusami, a te często i szybko ewoluują. Gdyby jednak powstała uniwersalna szczepionka, bylibyśmy chronieni przed wieloma obecnymi i przyszłymi infekcjami.
      Wspomniana AGO4 to przedstawicielka większej rodziny AGO. Jeszcze do niedawna nie wiedziano, jaką rolę proteiny te spełniają. Teraz naukowcy z MGH pracujący pod kierunkiem doktor Kate L. Jeffrey odkryli, że AGO4 odgrywa kluczową rolę w ochronie komórek przed infekcją wirusową.
      Jak informują uczeni na łamach Cell Reports, AGO4 jest proteiną specyficzną dla komórek odpornościowych ssaków. Gdy uczeni próbowali infekować wirusami różne linie komórek, odkryli, że tylko te komórki, którym brakowało AGO4 był bardzo wrażliwe na infekcję. To zaś sugeruje, że niski poziom AGO4 ułatwia infekcje, zatem podniesienie poziomu tej proteiny będzie chroniło nas przed wieloma różnymi wirusami.
      Naszym celem jest zrozumienie, jak działa układ odpornościowy, dzięki czemu będziemy mogli stworzyć lek na wiele wirusów, zamiast szczepionki na jednego konkretnego, mówi Jeffrey. W kolejnym etapie badań naukowcy postarają się dowiedzieć, jak różne poziomy AGO4 wpływają na możliwość infekcji różnymi wirusami. Później będziemy musieli opracować metodę zwiększenia poziomu AGO4 w komórkach, by zwiększyć ochronę przeciwko wirusom, dodaje Jeffrey.

      « powrót do artykułu
×
×
  • Create New...