Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Wirus zabijający komórki nowotworowe został wyposażony w nową broń. Naukowcy uzbroili go w proteinę, dzięki której bierze on na cel i zabija również przyległe komórki, chroniące nowotwór przed atakiem ze strony układ odpornościowego.

Po raz pierwszy udało się w ten sposób wziąć na cel fibroblasty znajdujące się w guzie. Fibroblasty te to zdrowe komórki, które zostały zaprzęgnięte przez nowotwór do jego ochrony i dostarczania mu pożywienia.

Naukowcy z Uniwersytetu w Oksfordzie informują, że wstępne testy, przeprowadzone na hodowlach ludzkich komórek oraz na myszach wykazały, iż nowa technologia jest bezpieczna. Jeśli wyniki te się potwierdzą, to pierwsze testy na ludziach mogą rozpocząć się już w przyszłym roku.

Obecnie używane techniki, które prowadzą do śmierci fibroblastów w guzie, zabijają też fibroblasty w innych częściach organizmu, przez są są wysoce szkodliwe.

Autorzy najnowszych badań, których wyniki opublikowano w piśmie Cancer Research, wykorzystali wirusa o nazwie enadenotucirev, który od kilku lat jest testowany pod kątem zwalczania komórek nowotworowych. Do genomu wirusa dodali informację genetyczną, która powodowała, że zainfekowane nim komórki nowotworowe zaczęły wytwarzać podwójnie specyficzne przeciwciała monoklonalne (BiTE). Proteina ta łączy się z dwoma typami komórek. W tym przypadku jeden z jej końców łączył się z fibroblastami, a drugi z limfocytami T, powodując, że limfocyty zabijały fibroblasty.

Przejęliśmy mechanizm wirusa, dzięki czemu BiTE były wytwarzane tylko w zainfekowanych komórkach nowotworowych i nigdzie indziej w organizmie. To tak potężne molekuły, że mogą aktywować komórki układu odpornościowego wewnątrz guza i skłonić je do ataku na fibroblasty, mówi główny autor badań doktor Joshua Freedman z Uniwersytetu w Oksfordzie.

Nawet gdy większość komórek nowotworowych zostaje zabitych, to fibroblasty mogą ochronić te pozostałe i pomóc w nawrocie choroby. Dotychczas nie istniał żaden sposób, by zabić komórki nowotworowe i fibroblasty, a jednocześnie ochronić fibroblasty w innych częściach organizmu. Nasza nowa technika może być ważnym krokiem w kierunku zmniejszenia siły tłumienia układu odpornościowego przez nowotwór i może pomóc w ponownym uruchomieniu procesu ochrony organizmu. Wykorzystany przez nas wirus jest już testowany na ludziach, mamy więc nadzieję, że nasz zmodyfikowany wirus zostanie dopuszczony do testów klinicznych już w przyszłym roku, dodaje doktor Kerry Fisher z Wydziału Onkologii Oxford University.

Dotychczas zmodyfikowany wirus został pomyślnie przetestowany na próbkach guzów nowotworowych oraz próbkach zdrowego szpiku kostnego. Nie zauważono żadnego toksycznego działania czy też niewłaściwej aktywacji limfocytów T.

Wspomniany wirus infekuje raki, najbardziej rozpowszechnione typy nowotworów, które rozpoczynają się w skórze lub tkankach otaczających organy wewnętrzne, takie jak trzustka, płuca, jajniki, prostatę i inne.


« powrót do artykułu
  • Pozytyw (+1) 2

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
28 minut temu, KopalniaWiedzy.pl napisał:

Do genomu wirusa dodali informację genetyczną, która powodowała, że zainfekowane nim komórki nowotworowe zaczęły wytwarzać podwójnie specyficzne przeciwciała monoklonalne (BiTE).

No to będzie dysonans. Modyfikacje genetyczne są be, ale lekarstwem na raka nie pogardzimy. Ciekawe co się stanie jak im ten wirus ucieknie - przez kontynent się przetoczy fala wyzdrowień? Jakoś nie mogę wymyślić holyłudzkiego scenariusza bazującego na uwolnieniu uzdrawiającego wirusa :D 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
5 minut temu, Jajcenty napisał:

Modyfikacje genetyczne są be, ale lekarstwem na raka nie pogardzimy.

Ty się nie ekscytuj. Takich odkryć było wiele, jeszcze wiele pracy przed nimi. Jeśli się uda to o szkodliwości czegoś można mówić często za kilka pokoleń, tego nie doczekamy. Więc o czym chcesz te swoje filmy robić? 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
22 minuty temu, Jajcenty napisał:

Ciekawe co się stanie jak im ten wirus ucieknie - przez kontynent się przetoczy fala wyzdrowień?

Zusy całego świata będą go tropić do jego, albo ich końca.;)

  • Haha 2

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, Jajcenty napisał:

scenariusza bazującego na uwolnieniu uzdrawiającego wirusa

Podsunę ci frapujący punkt wyjścia: wirus przenosi się drogą płciową. :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
23 godziny temu, Jajcenty napisał:

Jakoś nie mogę wymyślić holyłudzkiego scenariusza bazującego na uwolnieniu uzdrawiającego wirusa :D 

Remake starego - World War Z

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Około 15 lat temu immunolog Dusan Bogunovic z Columbia University natrafił na pacjentów cierpiących na rzadką chorobę genetyczną. Pierwotnie sądzono, że mutacja zwiększa ich podatność na niektóre infekcje bakteryjne. Jednak im więcej takich pacjentów identyfikowano, im szerzej zakrojone badania można było przeprowadzić, tym bardziej jasne stawało się, że osoby takie mają niezwykłą cechę – ich organizmy wyjątkowo skutecznie radziły sobie z wirusami.
      Naukowiec odkrył, że u wszystkich pacjentów występuje niedobór białka ISG15, pełniącego funkcję regulatora odporności. Towarzyszył mu charakterystyczny dla infekcji wirusowej stan zapalny – łagodny, ale przewlekły i obejmujący cały organizm. Analiza komórek układu odpornościowego wykazała, że pacjenci zetknęli się z wieloma wirusami, w tym grypy, odry, świnki czy ospy wietrznej. Zaskakujące było jednak to, że osoby z mutacją nigdy nie zgłaszały objawów typowych dla tych infekcji. 
      Wyniki badań skłoniły naukowców do postawienia pytania, czy mechanizm związany z ISG15 można wykorzystać do opracowania uniwersalnej terapii przeciwwirusowej. Taki środek mógłby w przyszłości stanowić ochronę przed kolejnymi epidemiami i pandemią.
      Przed tygodniem w Science Translational Medicine ukazał się artykuł An mRNA-based broad-spectrum antiviral inspired by ISG15 deficiency protects against viral infections in vitro and in vivo. Bogunovic i jego koledzy informują w nim o opracowaniu uniwersalnej eksperymentalnej terapii antywirusowej. Gdy stworzony przez siebie środek podawali w postaci kropli do nosa myszom i chomikom, powstrzymywał on replikowanie wirusów grypy oraz SARS-CoV-2 i łagodził objawy choroby. Te dwa wirusy zostały przetestowane in vivo. Natomiast żaden wirus badany in vitro nie poradził sobie z ochroną zapewnianą komórkom przez nowy środek.

      Nowa terapia naśladuje skutki niedoboru ISG15. Naukowcy nie wyłączają jednak genu ISG15, gdyż ma on związek z wytwarzaniem ponad 60 białek, a skupili się na 10 białkach odpowiedzialnych za ochronę antywirusową. Na obecnym etapie rozwoju konstrukcja ich środka przypomina szczepionki mRNA przeciwko COVID. W skład preparatu wchodzi 10 cząsteczek mRNA kodujących 10 białek. Zostały one zamknięte w lipidowej nanocząsteczce. Po podaniu komórki biorcy wytwarzają 10 białek chroniących organizm. Całość działa przez krótki czas, wywołuje znacznie mniejszy stan zapalny niż u osób z niedoborem ISG15, ale to wystarcza do zapobiegania chorobom wirusowym, zapewnia Bogunovic.
      Zdaniem naukowca, taka szczepionka może znakomicie przyczynić się do powstrzymania kolejnych pandemii. Można by ją podawać lekarzom, osobom w domach opieki i rodzinom chorych. W ten sposób osoby te byłyby chronione na wczesnym etapie rozwijającej się pandemii, bez względu na to, jaki wirus ją wywołuje. Uważamy, że zadziała to nawet jeśli czynnik chorobowy nie zostanie jeszcze zidentyfikowany, mów Bodunovic.
      Technologia wymaga jeszcze dopracowania, szczególnie droga podawania i dawka. Co prawda myszy i chomiki były chronione przed poważnym zachorowaniem, ale – zdaniem Bogunovica – ochrona nie była na tyle silna, by bezpiecznie mogły się one kontaktować z chorymi zwierzętami. Naukowcy muszą też określić, jak długo trwa ochrona. Obecnie szacują, że jest to 3-4 dni od podania środka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z kilku amerykańskich uczelni opracowali niezwykły sposób szczepienia. Wykorzystują przy tym... nić dentystyczną. Przetestowali swój pomysł na myszach i okazało się, że to działa. Nić dostarcza szczepionkę do tkanki pomiędzy zębami a dziąsłami, a u tak zaszczepionych myszy doszło do zwiększenia produkcji przeciwciał na powierzchniach wyściełanych błoną śluzową, takich jak nos czy płuca.
      Powierzchnie pokryte błoną śluzową są bardzo ważne, gdyż to one są bramą do organizmu dla takich patogenów jak wirusy grypy czy koronawirusy. Gdy podajemy tradycyjną szczepionkę, przeciwciała są głównie wytwarzane we krwi, w błonach śluzowych pojawia się ich stosunkowo niewiele. Wiemy jednak, że jeśli szczepionkę poda się do błony śluzowej, przeciwciała pojawiają się w i niej, i we krwi. To daje organizmowi dodatkową linię obrony przed wniknięciem patogenu, mówi profesor Harvinder Singh Gill z North Carolina State University i Texas Tech University.
      Skąd jednak pomysł właśnie na nić dentystyczną jako metodę dostarczania szczepionki? Przyczyną jest nabłonek łączący. To specyficzny typ nabłonka, który znajduje się na styku dziąsła i zęba. To kluczowa struktura dla zdrowia przyzębia. W przeciwieństwie do innych rodzajów nabłonka, jego komórki są luźno połączone, co pozwala na migrację komórek odpornościowych, stanowiących obronę naszego organizmu w jamie ustnej. Nabłonek łączący jest łatwiej przenikalny niż inne rodzaje nabłonka i jednocześnie jest częścią błony śluzowej. To unikatowa struktura, którą można wykorzystać do stymulowania produkcji przeciwciał w błonach śluzowych organizmu, mówi Gill.
      Naukowcy nasączyli więc szczepionką niewoskowaną nić dentystyczną i użyli taką nić na myszach laboratoryjnych. Następnie sprawdzili wytwarzanie przeciwciał u myszy, u których szczepionkę podano przez nić dentystyczną, przez nos oraz umieszczając preparat pod językiem myszy. Okazało się, że podanie szczepionki za pomocą nici dentystycznej do nabłonka łączącego spowodowało znacznie większą produkcję przeciwciał niż obecny złoty standard szczepień doustnych, czyli umieszczenie środka pod językiem, mówi Rohan Ingrole z Texas Tech University. Zastosowanie nici chroniło też przed wirusem grypy równie dobrze, co podanie szczepionki przez nabłonek nosa, dodaje.
      Wyniki badań są bardzo obiecujące, gdyż większości szczepionek nie można podać przez nabłonek nosa. Nie wchłaniają się one dobrze. Ponadto podanie przez nos może potencjalnie prowadzić do przedostania się szczepionki do mózgu, co rodzi obawy o bezpieczeństwo. W przypadku podania przez nabłonek łączący, nie ma takiego ryzyka. Podczas eksperymentów wykorzystaliśmy jedną ze szczepionek, którą podaje się przez nos, by porównać efektywność obu dróg szczepienia, wyjaśnia Gill.
      Eksperymenty pokazały też, że trzy różne klasy szczepionek – białkowe, z wykorzystaniem nieaktywnych wirusów i mRNA – dają silną odpowiedź immunologiczną zarówno w krwi, jak i w błonach śluzowych. Ponadto, przynajmniej w modelu zwierzęcym, nie miało znaczenia, czy bezpośrednio po podaniu szczepionki za pomocą nici, zwierzę jadło lub piło.
      Nowa metoda szczepienia wygląda bardzo obiecująco, jednak nie jest doskonała. Nie sprawdzi się u niemowląt, które nie mają zębów. Otwarte pozostaje też pytanie o efektywność takiego szczepienia u ludzi z chorobami przyzębia czy infekcjami jamy ustnej.
      Badania opisano na łamach Nature Biomedical Engineering.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zobaczcie, co wirus opryszczki typu I (HSV-1) robi z komórkami. Po lewej jądro komórkowe przed atakiem wirusa, po prawej – 8 godzin po infekcji. Wirusy są w pełni uzależnione od gospodarzy. Przejmują maszynerię komórek gospodarza, by się namnażać. Okazuje się, że HSV-1 w znaczącym stopniu przebudowuje też wnętrze komórki.
      Badacze z hiszpańskiego Narodowego Centrum Biotechnologii zarejestrowali, w jaki sposób wirus przeorganizowuje materiał genetyczny w komórce, zmieniając jego kształt tak, by zyskać najlepszy dostęp do genów, których potrzebuje do optymalnej reprodukcji. HSV-1 to oportunistyczny projektant wnętrz, którzy niezwykle precyzyjnie przebudowuje ludzki genom i wybiera, z którymi jego fragmentami wchodzi w interakcje. To nowatorski mechanizm manipulacji, o którym nie wiedzieliśmy, stwierdziła główna autorka najnowszych badań, doktor Esther González Almela.
      Już wcześniej wiedziano, że inne herpeswirusy ścieśniają i zmieniają kształt chromosomów gospodarza. Nie było jednak wiadomo, czy jest to działanie celowe, czy też skutek uboczny zakażenia komórki wirusem. Teraz naukowcy zdobyli pierwszy dowód, że HSV-1 celowo zmienia genom w komórce. Robi to zaledwie w ciągu kilku godzin. Jednak najbardziej obiecującym aspektem tych badań jest spostrzeżenie, że blokując pojedynczy enzym gospodarza – topoizomerazę typu I – można całkowicie zablokować zdolność HSV-1 to reorganizacji materiału genetycznego komórki i tym samym powstrzymać infekcję. Być może uda się w ten sposób kontrolować uciążliwego wirusa, którego nosicielami są niemal 4 miliardy ludzi.
      Proces przejmowania komórki przez wirusa rozpoczyna się w ciągu godziny od infekcji. Patogen przejmuje kontrolę nad polimerazą RNA II oraz topoizomerazą I i wykorzystuje je do syntezy własnych białek. Wirus tak intensywnie przejmuje kontrolę, że po około 3 godzinach polimeraza RNA II i inne białka przestają obsługiwać ludzkie geny, w komórce niemal całkowicie ustaje transkrypcja, a to prowadzi do fizycznych zmian w strukturze genomu. Występująca w jądrze komórkowym chromatyna ulega silnemu skondensowaniu i po 3 godzinach zajmuje jedynie 30% pierwotnej objętości. Ten bardzo brutalny atak zaskoczył naukowców. Zawsze sądziliśmy, że gęsta chromatyna blokuje aktywność genów. Tutaj widzimy mechanizm działający w drugą stronę – najpierw dochodzi do dezaktywacji genów, a potem to zagęszczenia chromatyny, stwierdzili naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nieznane wcześniej organellum, odkryte wewnątrz ludzkich komórek, może zostać wykorzystane do leczenia ciężkich chorób dziedzicznych. Taką nadzieję mają jego odkrywcy, naukowcy z Wydziału Medycyny University of Virginia (UVA) oraz amerykańskich Narodowych Instytutów zdrowia (NIH). Nową strukturę nazwali „hemifuzomem”.
      Hemifuzom odgrywa duża rolę w sortowaniu, przetwarzaniu i pozbywaniu się niepotrzebnego materiału. To jak odkrycie nowego centrum recyklingu wewnątrz komórki. Sądzimy, że hemifuzom pomaga w zarządzaniu przetwarzaniem materiału przez komórkę i jeśli proces ten zostanie zaburzony, może to prowadzić do chorób, które wpływają na wiele układów w organizmie, mówi doktor Seham Ebrahim. Dopiero zaczynamy rozumieć, jak to nowe organellum wpisuje się w szerszy obraz chorób i zdrowia. To bardzo ekscytujące badania, gdyż odkrycie czegoś zupełnie nowego w komórce to rzadkość, dodaje uczona.
      Odkrycia dokonano dzięki doświadczeniu zespołu z UVA w tomografii krioelektronowej, która umożliwia „zamrożenie” komórki w czasie i dokładne przyjrzenie się jej. Uczeni sądzą, że hemifuzomy ułatwiają tworzenie się pęcherzyków wewnątrz komórki oraz organelli utworzonych z wielu pęcherzyków.
      Pęcherzyki są jak niewielkie ciężarówki wewnątrz komórki. Hemifuzom to rodzaj doku, w którym ciężarówki się łączą i przewożą swój ładunek. To etap pracy, o którym dotychczas nie mieliśmy pojęcia, dodaje Ebrahim. Mimo, że hemifuzomy dotychczas umykały uwadze naukowców, ich odkrywcy mówią, że w pewnych częściach komórki występują one zaskakująco powszechnie. Teraz uczeni chcą lepiej poznać ich rolę w prawidłowym funkcjonowaniu komórek. Gdy już wiemy, że hemifuzomy istnieją, możemy badać, jak zachowują się one w zdrowych komórkach, a co się dzieje, gdy coś pójdzie nie tak. To może prowadzić do opracowania strategii leczenia złożonych chorób genetycznych, cieszy się Ebrahim.
      Źródło: Hemifusomes and interacting proteolipid nanodroplets mediate multi-vesicular body formation, https://www.nature.com/articles/s41467-025-59887-9

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Bakterie mikrobiomu jelitowego potrafią przekształcać kwasy żółciowe – końcowe produkty rozkładu endogennego cholesterolu – w związki, które wspomagają układ odpornościowy w walce z nowotworami poprzez blokowanie sygnalizacji androgenowej. Takie niespodziewane wyniki badań uzyskali naukowcy z Weill Conrell Medicine.
      Jestem bardzo zdziwiony. O ile mi wiadomo nikt dotychczas nie zauważył, że molekuły takie jak kwasy żółciowe mogą w ten sposób wpływać na receptor androgenowy, stwierdził profesor Chun-Jun Guo z Wydziału Gastroenterologii i Hepatologii, który wraz z profesorem Davidem Artisem nadzorował prace badawcze.
      Kwasy żółciowe powstają w wątrobie i trafiają do jelit, gdzie różne bakterie modyfikują ich strukturę chemiczną. Autorzy badań – doktorzy Wen-Bing Jin i Leyi Xiao – podejrzewali, że modyfikacje te mogą wpływać na działania kwasów żółciowych oraz na ich interakcję ze szlakami sygnałowymi. Postanowili więc bliżej przyjrzeć się temu zjawisku.
      Okazało się, że bakterie potrafią wprowadzić poważne modyfikacje. Odkryliśmy ponad 50 różnych molekuł kwasów żółciowych zmienionych przez bakterie, informuje dr Guo. To odkrycie sprowokowało uczonych do dalszych badań. Kwasy żółciowe są bowiem steroidami, tak jak hormony płciowe. Oznacza to, że mają podobną strukturę. W głowach naukowców narodziło się więc pytanie, czy zmodyfikowane przez bakterie kwasy żółciowe mogą wchodzić w interakcje z receptorami hormonów płciowych. To był szalony pomysł, przyznaje Guo.
      Gdy naukowcy przeanalizowali 56 zidentyfikowanych przez siebie kwasów żółciowych zmienionych przez mikrobiom, znaleźli wśród nich jednego antagonistę receptora androgenowego, czyli związek który blokował ten receptor. Następnie przyjrzeli się 44 wcześniej znanych zmodyfikowanych kwasów żółciowych i okazało się, że wśród nich jest 3 kolejnych antagonistów. Badacze zadali sobie więc kolejne pytanie: na które konkretnie komórki wpływają zmodyfikowane kwasy żółciowe i na jakie funkcje biologiczne tych komórek mają wpływ?
      Receptor androgenowy obecny jest, między innymi, w niektórych komórkach układu odpornościowego, w tym w limfocytach T CD8. Już wczesniejsze badania wykazały, że zablokowanie tego receptora zwiększa zdolność tych limfocytów do zwalczania nowotworów. Uczeni przeprowadzili więc testy na myszach z nowotworem pęcherza, którym podawali zmodyfikowane przez bakterie kwasy żółciowe będące antagonistami receptora androgenowego. Wyniki badań sugerują, że te zmienione kwasy żółciowe zwiększały zdolność limfocytów T do przeżycia wewnątrz guza i niszczenia komórek nowotworowych, cieszy się doktor Collins. To pokazuje, jak ważne są związki pomiędzy naszym organizmem, a mikrobiomem jelit i wskazuje, że w przyszłych terapiach antynowotworowych należy brać pod uwagę aktywność mikrobiomu, dodaje doktor Artis.
      Odkrycie otwiera kilka nowych możliwości na polu walki z nowotworami. Oznacza ono na przykład, że przed rozpoczęciem terapii antynowotworowej można będzie wprowadzić do jelit pacjenta konkretne bakterie, które zwiększą możliwości obronne organizmu. Można też będzie bezpośrednio podawać zmodyfikowane kwasy żółciowe.
      Jednak najważniejszym wnioskiem płynącym z badań jest konieczność odpowiedniego dbania o mikrobiom jelitowy, a ten zaburzamy przede wszystkim nieprawidłową dietą. Do zbadania pozostaje kwestia, czy specjalna dieta zwiększy zdolności obronne naszego organizmu oraz jaki wpływ na zdrowie mogą mieć pochodzący z kwasów żółciowych antagoniści receptorów androgenowych na organizm zdrowego człowieka.
      Jeśli chcemy utrzymać mikrobiom jelit w dobrym stanie powinniśmy jeść dużo warzyw (w tym kiszonek), gdyż dla zdrowia jelit ważne jest spożywanie odpowiedniej ilości błonnika. Należy też znacząco ograniczyć spożycie tłuszczów, mięsa (szczególnie czerwonego jak wieprzowina i wołowina) oraz produktów wysokoprzetworzonych. Na mikrobiom negatywnie wpływają też leki, alkohol i palenie papierosów (również te elektroniczne).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...