Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tajemnicze sygnały wstrząsną współczesną fizyką?

Rekomendowane odpowiedzi

Przed dwoma laty nad Antarktyką zarejestrowano zjawisko, którego fizycy wciąż nie potrafią jednoznacznie wyjaśnić. Niewykluczone, że nie pasuje ono do Modelu Standardowego.

W marcu 2016 roku należący do NASA Antarctic Impulsive Transient Antenna (ANITA), dryfujący nad Antarktyką balon z anteną wykrywającą promieniowanie kosmiczne, zarejestrował dwa impulsy promieniowania kosmicznego, które... pochodziły z Ziemi. Od tamtej pory zaproponowano szereg wyjaśnień tego zjawiska. Mówiono o sterylnych neutrino i o nietypowym rozkładzie ciemnej materii we wnętrzu Ziemi.

Astrofizycy z Penn State University opublikowali artykuł, w którym informują, że to, co zarejestrowała ANITA nie jest jedynym zjawiskiem tego typu. Okazało się, że trzykrotnie podobne impulsy wykryło IceCube, umieszczone w lodzie Antarktyki obserwatorium neutrin. Z artykułu autorstwa Dereka Foxa, Steinna Sigurdsonna i innych dowiadujemy się też, że szansa, iż zaobserwowane zjawisko jest zgodne z Modelem Standardowym wynosi 1/3.500.000.

Fox, Sigurdsson i ich koledzy sprawdzili dane z innych detektorów, poszukując w nich sygnałów podobnych do tych, jakie zarejestrowała ANITA. Gdy okazało się, że promieniowanie kosmiczne pochodzące z Ziemi zostało trzykrotnie zarejestrowane przez IceCube, naukowcy zdali sobie sprawę, że wpadli na trop czegoś, co może zmienić współczesną fizykę. To skłoniło mnie do poważnego przyjrzenia się danym z ANITA. Właśnie po to jest się fizykiem. By łamać modele, ustalać nowe stałe, dowiadywać się o świecie czegoś, czego nie wiemy, mówi Fox.

Nawet jeśli Model Standardowy świetnie wyjaśnia nam szereg zjawisk, to ma on wiele luk. Na przykład nie pasuje do niego istnienie ciemniej materii, masa neutrino czy asymetria materii i antymaterii we wszechświecie, mówi Seyda Ipek, fizyk cząstek z Uniwersytetu Kalifornijskiego w Irvine.

Nadzieją na jakiś przełom w fizyce był Wielki Zderzacz Hadronów. Urządzenie wykryło bozon Higgsa, brakujący element Modelu Standardowego, i na tym się skończyło. Tymczasem fizycy na całym świecie szukają nowych idei, które pozwoliłyby lepiej zrozumieć wszechświat.

Teraz część naukowców twierdzi, że artykuł fizyków z Penn State dostarcza solidnych podstaw dających nadzieję, że w końcu w fizyce wydarzy się coś nowego. Od samego początku było jasne, że jeśli wydarzenia zarejestrowane przez ANITA są spowodowane cząstkami, które przebyły tysiące kilometrów przez naszą planetę, to cząstki te z bardzo dużym prawdopodobieństwem nie należą do Modelu Standardowego, stwierdza Mauricio Bustamante, astrofizyk z Uniwersytetu w Kopenhadze. Opublikowany artykuł to pierwsze solidne wyliczenie prawdopodobieństwa, które pokazuje, jak mało możliwe jest, że mamy tu do czynienia z czymś, co zgadza się z Modelem Standardowym, dodaje. Podobnego zdania jest Bill Louis, fizyk neutrino z Los Alamos National Laboratory.

Jeśli wspomniane sygnały pochodziłyby od cząstek z Modelu Standardowego, to cząstkami tymi byłyby neutrino. Żadne inna cząstka nie przedostałaby się przez cały przekrój naszej planety. Jednak, jak mówi Louis, neutrino zdolne do przelecenia przez przekrój Ziemi mają tak małą energię, że nie powinny zostać wykryte przez ANITA i IceCube. Te o większych energiach, które mogłyby zostać zarejestrowane, zostałyby wcześniej przechwycone przez Ziemię. Zdaniem Louisa artykuł z Penn State wskazuje, że to, co wywołało zarejestrowane sygnały jest zgodne z teorią o supersymetrii.

Zdaniem autorów artykułu, najbardziej prawdopodobnym wyjaśnieniem pojawienia się zarejestrowanych sygnałów jest istnienie sleptonów stau. Wedle teorii o supersymetrii są one supersymetrycznymi partnerami leptonów tau Modelu Standardowego.
Louis dodaje, że na obecnym etapie badań tak dokładne wskazanie na konkretne cząstki jest nieco naciągane. Autorzy z Penn State dokonali solidnych obliczeń wskazujących, że najprawdopodobniej żadna znana cząstka nie mogła przebyć Ziemi w taki sposób, jak te zarejestrowane. Jednak wciąż nie ma całkowitej pewności. Na pewno zaś mamy za mało danych, by wskazywać na konkretną cząstkę.

Fox zgadza się z tym, co mówi Louis. Jako obserwator nie mam możliwości definitywnego stwierdzenia,  że to stau. Analizowałem dane, próbując dowiedzieć się czegoś nowego o wszechświecie i trafiłem na dziwaczne zjawisko. Potem wraz z kolegami przejrzeliśmy literaturę fachową, by sprawdzić, czy ktoś już tego nie wyjaśnił. Znaleźliśmy artykuły, w tym jeden sprzed 14 lat, których autorzy przewidywali coś podobnego, dodaje.

Okazuje się, że niektórzy fizycy teoretycy przewidywali, iż sleptony stau mogą dawać takie właśnie sygnały w detektorach neutrin. Jako, że prace te były pisane na długo zanim ANITA zarejestrowała sygnały, nie można wykluczyć, iż fizycy ci byli na dobrym tropie.

Fox nie wyklucza, że jeśli naukowcy pracujący przy IceCube sięgną głębiej do swoich archiwów, to znajdą tam kolejne sygnały, których wcześniej nie zauważono. Louis i Bustamante uważają, że NASA powinna przeprowadzić więcej badań za pomocą ANITA i spróbować zarejestrować kolejne sygnały tego typu. Musimy być pewni, że zjawiska te nie są związane z jakimiś nieznanymi nam czynnikami, na przykład z nierozpoznanymi właściwościami lodu Antarktyki. Potrzebujemy kolejnych instrumentów, które wykryłyby podobne sygnały, mówi Bustamante.

Jeśli dokonane dotychczas obserwacje się potwierdzą, może okazać się, że ANITA może mieć większy wkład w naukę niż Wielki Zderzacz Hadronów (LHC). Każdy przypadek zaobserwowania cząstek nienależących do Modelu Standardowego będzie przełomem, gdyż pokaże nam, gdzie mamy poszukiwać fizyki spoza Modelu Standardowego. W LHC bardzo trudno byłoby uzyskać i wykryć cząstki supersymetryczne, stwierdza Ipek. Naukowcy dodają, że dzięki danym z ANITA można będzie ewentualnie tak dostroić LHC by Zderzacz zaczął badań supersymetryczne cząstki.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
16 hours ago, KopalniaWiedzy.pl said:

szansa, iż zaobserwowane zjawisko jest zgodne z Modelem Standardowym wynosi 1/3.500.000

Czyli, jeśli zanotowanoby 7 milionów takich zdarzeń idących od strony nieba i dwa od strony Ziemi, to wszystko byłoby OK? Wiadomo jak to faktycznie wygląda w pomiarach?

Edytowane przez Przemek Kobel

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, ex nihilo napisał:

I na tym właśnie cała zabawa polega - ANITA zarejestrował wylatujące z Ziemi coś, czego by nie miał prawa zarejestrować, gdyby tym czymś były neutrina.

Ciekawe czy zarejestrowali ten sam sygnał co IceCube, jakoś niejasno jest to opisane. Obserwacji trochę mało żeby wykluczyć błąd. Do tego obserwacja pośrednia impulsu elektromagnetycznego wiązki cząstek po zderzeniu, może takie impulsy nie mają tylko jednej przyczyny? Ale ja tam nic nie wiem, pewnie charakterystyka tych impulsów jest dokładnie obliczona i bardzo egzotyczna w porównaniu z szumami które generuje skorupa ziemska i wszystko co na niej się znajduje.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No tak :)
Ale :D

pamiętam doniesienia o neutrinach szybszych od światła :)

O tym odkryciu już od miesięcy gdzieś tam się mówi ale nikt na razie głowy nie da że to jest niezgodne z Modelem Standardowym.
(za neutrina szybsze od światła głowy poleciały).

Detekcja jakiś cząstek od strony Ziemi nie przekonuje mnie specjalnie ponieważ jest wiele procesów w czasie których emisja może powstać - oczywiście są charakterystyki wiele przypadków wykluczające ale czy wszystkie.
A co przede wszystkim to dobrze byłoby te cząstki zaobserwować nie tylko nad Antarktyką.

Bez powtarzalności, bez potwierdzenia - to nie jest element układanki tylko poszlaka gdzie mamy szukać.

Cytat

Zdaniem autorów artykułu, najbardziej prawdopodobnym wyjaśnieniem pojawienia się zarejestrowanych sygnałów jest istnienie sleptonów stau

No to już nawet wiemy gdzie szukać i czego.

Tylko nie wiemy czy to istnieje. Ja nadal obstawiam że to raczej pomyłka.

A obstawiam tak tylko na podstawie jednej rzeczy: Model Standardowy daje nam fenomenalną dokładność wyliczania niektórych parametrów do kilkunastu miejsc po przecinku.

Gdyby był w nim jakiś brak to wydaje mi się że odcisnąłby się na wielu parametrach w mocno zauważalny sposób.

Co nie znaczy że Model Standardowy to wszystko.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Humbaki przepływające w pobliżu Australii zmieniły termin migracji, a przyczyna tego stanu rzeczy leży prawdopodobnie w ocieplających się wodach Oceanu Południowego. Profesor Rebecca Dunlop z University of Queensland poinformowała, że badania akustyczne i zwiady lotnicze prowadzone wzdłuż wschodnich wybrzeży Australii pokazały, że humbaki wracają z północy na południe o 3 tygodnie wcześniej, niż robiły to 21 lat temu.
      W 2003 roku szczyt migracji na południe przypadał na początek października. W 2024 roku była to połowa września, stwierdziła Dunlop. O ile termin migracji w sposób naturalny może zmieniać się z roku na rok o około 2 tygodnie, to od 2021 roku obserwujemy wyraźne przesunięcie, dodaje uczona.
      W miesiącach zimowych  – pamiętajmy, że mówimy tutaj o półkuli południowej – humbaki niemal nie jedzą. Migrują w tym czasie z letnich miejsc żerowania na południu w kierunku obszarów subtropikalnych i tropikalnych, gdzie się rozmnażają. Czas migracji dobierają tak, by upewnić się, że zostają w wodach Antarktyki na tyle długo, by nagromadzić odpowiednią ilość tłuszczu i białka, które wystarczą im w czasie migracji na północ i z powrotem oraz na rozmnażanie się.
      Naukowcy zauważyli, że wyraźna w ostatnich latach zmiana terminu migracji zbiega się ze znacznym zmniejszeniem zasięgu lodu morskiego. Mniej lodu morskiego, oznacza mniej glonów, którymi żywi się kryl. A mniej kryla dostępnego przed migracją może zmuszać humbaki do wcześniejszego powrotu z północy, stwierdza Dunlop.
      Gdy w latach 60. XX wieku zaprzestano polowań na humbaki, wschodnioaustralijska populacja liczyła zaledwie około 300 osobników. Obecnie jest ich około 40 000. Badaliśmy, że wcześniejsze opuszczenie północnych regionów rozrodu może być spowodowane zbytnim zagęszczeniem zwierząt, ludzkiej aktywności na Wielkiej Rafie czy innymi czynnikami. Jednak o ile populacja zwiększała się przez ostatnich 21 lat, to do wyraźnej zmiany migracji doszło po 2021 roku, kiedy to rosnąca temperatura wody wpłynęła na pokrywę lodową wokół Antarktyki, mówi doktor Dunlop. Uczona dodaje, że podobną zmianę widać też w innych populacjach humbaków, tych z regionów Ameryki Południowej oraz zachodniego wybrzeża Australii.
      Obawiam się, że w pewnym momencie dojdzie do spadku urodzin, gdyż samice nie będą miały wystarczająco dużo energii, by odbyć migrację na północ, urodzić młode i wrócić z nim na południowe żerowiska, stwierdza Dunlop. Obecnie trwają badania mające sprawdzić, czy czas migracji na północ również uległ zmianie.
      Źródło: Southern Ocean humpback whales are shifting to an earlier return migration, https://www.nature.com/articles/s41598-025-07010-9

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedawno astronomowie usłyszeli głos z kosmicznych zaświatów. Potężny krótkotrwały impuls na chwilę przyćmił wszystkie źródła sygnałów radiowych. Clancy James z australijskiego Curtin University i jego zespół skanowali nieboskłon za pomocą Australian Square Kilometre Array Pathfinder (ASKAP) – zestawu 36 radioteleskopów znajdujących się w Zachodniej Australii – odebrali krótki, bardzo silny sygnał. 
      Niezwykle podekscytowani stwierdzili, być może odkryli nowy pulsar lub inny obiekt, a że źródło sygnału  wydawało się pochodzić z naszej galaktyki, stwierdzili, że nowy obiekt powinien być widoczny za pomocą teleskopów optycznych. Jednak gdy bardziej szczegółowo przeanalizowali sygnał okazało się, że jego źródło było tak blisko, iż ASKAP nie skupić na nim jednocześnie wszystkich swoich anten. A to oznaczało, że źródło sygnału musi znajdować się mniej niż 20 tysięcy kilometrów od Ziemi. Impuls trwał zaledwie 30 nanosekund i przez tę chwilę silniejszy, niż wszystko inne rejestrowane za pomocą radioteleskopów.
      Gdy Australijczycy przeanalizowali pozycję źródła sygnału i porównali ją z pozycjami wszystkich znanych satelitów okazało się, że jedynym możliwym źródłem sygnału jest Relay 2. To jeden z pierwszych satelitów w historii. Został wystrzelony w 1964 roku i służył NASA jako eksperymentalne urządzenie komunikacyjne. Agencja przestała używać Relay 2 już w 1965 roku, natomiast pokładowa elektronika satelity działała do roku 1967. Wówczas Relay 2 zamilkł i od tej pory krąży wokół Ziemi jako bezwładny kawałek metalu.
      Teraz, po niemal 60 latach satelita znowu wysłał sygnał. Jednak jego urządzenie nie działają, więc źródłem sygnału musiały być czynniki zewnętrzne. Clancy i jego koledzy sądzą, że albo na powierzchni satelity zebrały się ładunki elektrostatyczne i doszło do wyładowania, albo uderzył w niego mikrometeoryt, który wywołał pojawienie się chmury plazmy. Sygnały z obu tych wydarzeń wyglądają podobnie, więc trudno byłoby je odróżnić. Przede wszystkim ktoś musiałby chcieć przeprowadzić takie badania. Tylko po co?
      Źródło: A nanosecond-duration radio pulse originating from the defunct Relay 2 satellite, https://arxiv.org/abs/2506.11462

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krążący wysoko nad Antarktydą wykrywacz promieniowania kosmicznego, zarejestrował nietypowe sygnały, które wykraczają poza nasze obecne rozumienie fizyki cząstek. ANITA (Antarctic Impulsive Transient Antenna) to zespół wyspecjalizowanych anten, które za pomocą balonu wypuszczane były nad Antarktyką i przez około miesiąc krążyły na wysokości do 40 kilometrów, unoszone przez wiatry obiegające kontynent. Celem eksperymentu jest obserwowanie promieniowania kosmicznego po tym, jak dotarło do Ziemi. W trakcie badań co najmniej 2-krotnie zarejestrowano sygnały, które nie pochodzą od promieniowania odbitego przez lód, a kierunek, z którego napłynęły, nie pozwala wyjaśnić ich pochodzenia na gruncie znanych zjawisk fizycznych.
      Sygnały radiowe, które odkryliśmy, nadeszły z bardzo ostrego kąta, około 30 stopni spod powierzchni lodu, mówi profesor Stephanie Wissel. Z obliczeń wynika, że taki sygnał musiałby przejść przez tysiące kilometrów skał, z których zbudowana jest Ziemia, ale wówczas byłby niewykrywalny, gdyż zostałby przez Ziemię zaabsorbowany. To interesujący problem, bo obecnie nie potrafimy wyjaśnić, czym jest ten sygnał. Wiemy jednak, że to najprawdopodobniej nie pochodzi z neutrin, dodaje uczona.
      Neutrina to cząstki bardzo pożądane przez naukowców. Niosą ze sobą ogrom informacji. W każdej sekundzie przez nasze ciała przechodzą biliony neutrin i nie czynią nam szkody. Neutrina niemal nigdy nie wchodzą w interakcje, trudno więc je wykryć.
      Źródłem neutrin mogą być na przykład wydarzenia, do których doszło miliary lat świetlne od nas. Wykrycie takiego neutrina to dla naukowców okazja, by dowiedzieć się czegoś więcej o wydarzeniu, które było jego źródłem.
      ANITA ma wykrywać też neutrina. Została umieszczona nad Antarktyką, gdyż tam istnienie najmniejsze ryzyko zakłócenia jej pracy przez inne sygnały. Unoszony przez balon zespół anten skierowany jest w dół i rejestruje wielkie pęki atmosferyczne odbite od lodu. Wielki pęk atmosferyczny, to wywołana pojedynczą cząstką promieniowania atmosferycznego kaskada cząstek powstających w atmosferze Ziemi.
      ANITA rejestruje takie pęki odbite od lodu, naukowcy są w stanie przeanalizować sam pęk, jak i pęk odbity od lodu i na tej podstawie określić, jaka cząstka wywołała pęk. Na podstawie kąta odbicia sygnału można zaś określić jego źródło. I tutaj pojawia się problem, gdyż zarejestrowano też sygnały, których nie można prześledzić do źródła. Kąt ich odbicia jest bowiem znacznie bardziej ostry, niż przewidują istniejące modele.
      Naukowcy przeanalizowali dane z wielu przelotów, porównali je z modelami matematycznymi, przeprowadzili liczne symulacje i wykluczyli zakłócenia tła i inne źródła sygnałów. Porównali swoje dane z niezależnie zbieranymi danymi innych instrumentów naukowych, takich jak IceCube Experiment czy Pierre Auger Observatory, by sprawdzić, czy i one odebrały podobne nietypowe sygnały. Okazało się, że nie. Dlatego też Wissel i jej koledzy określają znalezione sygnały jako „nietypowe” i wykluczają, by były one spowodowane przez neutrina. Sygnały nie pasują do standardowych modeli fizyki cząstek. Być może wyjaśnieniem tkwi w mniej popularnych teoriach, z których wynika, że sygnały te mogą pochodzić od ciemnej materii, jednak brak na to dowodów.
      Obecnie naukowcy budują nowe urządzenie, PUEO. Będzie ono większe i bardziej czułe. Badacze mają nadzieję, że rzuci ono nowe światło na nietypowe sygnały. Sądzę, że przy powierzchni lodu i blisko horyzontu dochodzi do jakichś interesujących zjawisk związanych z rozprzestrzenianiem się sygnałów radiowych. Nie rozumiemy tego. Sprawdzaliśmy różne hipotezy i do niczego nie doszliśmy. To tajemnica. Bardzo się cieszę na myśl o tym, że powstaje bardziej czułe PUEO. Powinniśmy uchwycić więcej takich anomalii, dzięki czemu być może zrozumiemy, z czym mamy do czynienia, dodaje Wissel.
      Źródło: Search for the Anomalous Events Detected by ANITA Using the Pierre Auger Observatory, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.121003

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy potrafią przygotować bakterie tak, by wyczuwały różnego typu molekuły obecne w środowisku, jak składniki odżywcze czy zanieczyszczenia w glebie. Jednak by odczytać takie sygnały, by stwierdzić, że bakterie wyczuły obecność interesujących nas molekuł, trzeba przyjrzeć się samym bakteriom pod mikroskopem. Przez to dotychczas nie mogły być wykorzystywane do monitorowania środowiska na duża skalę. Jednak właśnie się to zmieniło. Naukowcy z MIT stworzyli bakterie, od których sygnały można odczytywać z odległości 90 metrów. W przyszłości mogą więc powstać bakterie, które będzie można monitorować za pomocą dronów lub satelitów.
      Wyprodukowane na MIT bakterie wytwarzają molekuły generujące unikatowe połączenie kolorystyczne. To nowy sposób na uzyskiwanie informacji z komórki. Jeśli staniesz obok, niczego nie zauważysz, ale z odległości setek metrów, wykorzystując specjalną kamerę, możesz odczytać potrzebne informacje, mówi jeden z autorów badań, Christopher Voigt, dziekan Wydziału Inżynierii Biologicznej MIT.
      Naukowcy stworzyli dwa różne typy bakterii, które wytwarzają molekuły emitujące światło o specyficznej długości fali w zakresie widma widzialnego i podczerwieni. Światło to można zarejestrować za pomocą specjalnej kamery. Generowanie molekuł jest uruchamiane po wykryciu sąsiadujących bakterii, jednak tę samą technikę można wykorzystać do wytwarzania molekuł w obecności np. zanieczyszczeń. W ten sposób można bakterie zamieniać w czujniki wykrywające dowolne substancje.
      Generowane przez bakterie molekuły można obserwować za pomocą kamer hiperspektralnych, które pokazują zawartość różnych kolorów w każdym z pikseli obrazu. Każdy z nich zawiera bowiem informację o setkach fal światła o różnej długości.
      Obecnie kamery hiperspektralne wykorzystywane są na przykład do wykrywania promieniowania. Wykorzystuje się je chociażby wokół Czarnobyla do rejestrowania niewielkich zmian koloru, powodowanych przez pierwiastki radioaktywne w chlorofilu roślin.
      Uczeni z MIT wykorzystali podczas testów bakterie Pseudomonas putida i Rubrivivax gelatinosus. Pierwszą z nich przygotowali tak, by wydzielała biliwerdynę, drugą wyposażono w możliwość wytwarzania pewnego typu bakteriochlorofilu. Testowe skrzynki zawierające bakterie umieszczono w różnych miejscach, a następnie były one obserwowane przez kamery hiperspektralne.
      Kamery w ciągu 20–30 sekund skanowały skrzynki, a algorytm komputerowy analizował sygnały i zgłaszał, czy doszło do emisji wspomnianych związków. Największa odległość, z której udało się wykryć emisję molekuł przez bakterie wynosiła 90 metrów.
      Autorzy badań pracują już nad zwiększeniem odległości, z jakiej można odczytywać sygnały. Mówią, że ich technologia przyda się zarówno do badania ilości składników odżywczych w glebie, jak i do wykrywania min.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...