
Tysiące czarnych dziur w centrum Drogi Mlecznej
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W dobie niezmiennie ciekawych odkryć, szczególnie związanych z JWST, wracamy do fundamentalnych pytań dotyczących początków Wszechświata. W odległości 12,8 miliardów lat świetlnych od Ziemi znajduje się czarna dziura o masie około miliarda mas Słońca. Powstała zatem w czasie krótszym niż miliard lat po Wielkim Wybuchu. Dziurę odkryto przed dwoma laty, a dzięki teleskopowi Chandra wiemy, że zasila ona kwazar RACS J0320-35. Chandra pozwolił też stwierdzić, że czarna dziura rośnie w rekordowo szybkim tempie.
Gdy materia opada na czarną dziurę, jest podgrzewana i pojawia się intensywne promieniowanie w szerokim zakresie. Promieniowanie to wywiera ciśnienie na opadający materiał. Gdy tempo opadania materii osiągnie wartość krytyczną, ciśnienie promieniowania równoważy grawitację czarnej dziury i materiał nie może już na nią szybko opadać. Ta wartość krytyczna nazywana została granicą Eddingtona.
Naukowcy uważają obecnie, że czarne dziury przybierające na masie wolniej niż pozwala granica Eddingtona muszą rozpocząć swoje istnienie jako obiekty o około 10 000 mas Słońca lub więcej, by w ciągu miliarda lat po Wielkim Wybuchu osiągnąć masę miliard razy większą od naszej gwiazdy. Żeby jednak czarna dziura rozpoczęła swoje istnienie od tak dużej masy, musiałaby powstać w wyniku rzadko zachodzącego procesu zapadnięcia się wielkiej chmury gęstego gazu zawierającego niezwykle małe ilości pierwiastków cięższych od helu.
Jeśli jednak RACS J0320-35 rzeczywiście rośnie w tempie 2,4-krotnie przekraczającym granicę Eddingtona – jak na to wskazują badania – i jeśli proces ten zachodzi przez dłuższy czas, to czarna dziura mogła powstać w bardziej typowy sposób, wskutek zapadnięcia się masywnej gwiazdy o masie nie przekraczającej 100 Słońc.
Znając masę czarnej dziury i tempo jej rośnięcia, naukowcy są w stanie obliczyć, jaką miała masę, gdy powstała. To z kolei pozwala na testowanie różnych teorii dotyczących powstawania czarnych dziur. W przypadku RACS J0320-35 naukowcy porównali modele teoretyczne z danymi z Chandry dotyczącymi promieniowania rentgenowskiego. Okazało się, że uzyskane przez teleskop spektrum promieniowania rentgenowskiego wskazuje, że czarna dziura rośnie szybciej niż granica Eddingtona, a znajduje to potwierdzenie w spektrum w zakresie widzialnym i podczerwieni.
Tego typu badania przybliżają nas do rozwiązania zagadki dotyczącej powstania pierwszego pokolenia czarnych dziur. Inną tajemnicą, do rozwikłania której się zbliżyliśmy, było zauważenie dżetów cząstek uciekających od czarnej dziury z prędkością światła. Tego typu dżety są rzadko obserwowane w przypadku kwazarów, a to może oznaczać, że szybko rosnąca czarna dziura może mieć z nimi coś wspólnego.
Artykuł X-Ray Investigation of Possible Super-Eddington Accretion in a Radio-loud Quasar at z = 6.13 został opublikowany na łamach The Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W dobie niezmiennie ciekawych odkryć, szczególnie związanych z JWST, wracamy do fundamentalnych pytań dotyczących początków Wszechświata. W odległości 12,8 miliardów lat świetlnych od Ziemi znajduje się czarna dziura o masie około miliarda mas Słońca. Powstała zatem w czasie krótszym niż miliard lat po Wielkim Wybuchu. Dziurę odkryto przed dwoma laty, a dzięki teleskopowi Chandra wiemy, że zasila ona kwazar RACS J0320-35. Chandra pozwolił też stwierdzić, że czarna dziura rośnie w rekordowo szybkim tempie.
Gdy materia opada na czarną dziurę, jest podgrzewana i pojawia się intensywne promieniowanie w szerokim zakresie. Promieniowanie to wywiera ciśnienie na opadający materiał. Gdy tempo opadania materii osiągnie wartość krytyczną, ciśnienie promieniowania równoważy grawitację czarnej dziury i materiał nie może już na nią szybko opadać. Ta wartość krytyczna nazywana została granicą Eddingtona.
Naukowcy uważają obecnie, że czarne dziury przybierające na masie wolniej niż pozwala granica Eddingtona muszą rozpocząć swoje istnienie jako obiekty o około 10 000 mas Słońca lub więcej, by w ciągu miliarda lat po Wielkim Wybuchu osiągnąć masę miliard razy większą od naszej gwiazdy. Żeby jednak czarna dziura rozpoczęła swoje istnienie od tak dużej masy, musiałaby powstać w wyniku rzadko zachodzącego procesu zapadnięcia się wielkiej chmury gęstego gazu zawierającego niezwykle małe ilości pierwiastków cięższych od helu.
Jeśli jednak RACS J0320-35 rzeczywiście rośnie w tempie 2,4-krotnie przekraczającym granicę Eddingtona – jak na to wskazują badania – i jeśli proces ten zachodzi przez dłuższy czas, to czarna dziura mogła powstać w bardziej typowy sposób, wskutek zapadnięcia się masywnej gwiazdy o masie nie przekraczającej 100 Słońc.
Znając masę czarnej dziury i tempo jej rośnięcia, naukowcy są w stanie obliczyć, jaką miała masę, gdy powstała. To z kolei pozwala na testowanie różnych teorii dotyczących powstawania czarnych dziur. W przypadku RACS J0320-35 naukowcy porównali modele teoretyczne z danymi z Chandry dotyczącymi promieniowania rentgenowskiego. Okazało się, że uzyskane przez teleskop spektrum promieniowania rentgenowskiego wskazuje, że czarna dziura rośnie szybciej niż granica Eddingtona, a znajduje to potwierdzenie w spektrum w zakresie widzialnym i podczerwieni.
Tego typu badania przybliżają nas do rozwiązania zagadki dotyczącej powstania pierwszego pokolenia czarnych dziur. Inną tajemnicą, do rozwikłania której się zbliżyliśmy, było zauważenie dżetów cząstek uciekających od czarnej dziury z prędkością światła. Tego typu dżety są rzadko obserwowane w przypadku kwazarów, a to może oznaczać, że szybko rosnąca czarna dziura może mieć z nimi coś wspólnego.
Artykuł X-Ray Investigation of Possible Super-Eddington Accretion in a Radio-loud Quasar at z = 6.13 został opublikowany na łamach The Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół, kierowany przez naukowców z University of Texas w Austin, zidentyfikował najbardziej odległą i najstarszą czarną dziurę, jaką kiedykolwiek potwierdzono obserwacyjnie. Dziura i jej macierzysta galaktyka CAPERS-LRD-z9, istniały zaledwie 500 milionów lat po Wielkim Wybuchu, 13,3 miliarda lat temu.
Odkrycia dokonano za pomocą teleskopu Jamesa Webba (JWST) w ramach programu CAPERS (CANDELS-Area Prism Epoch of Reionization Survey), którego celem jest identyfikacja i analiza najodleglejszych galaktyk. Kluczowe było zastosowanie spektroskopii, pozwalającej na rozszczepienie światła na poszczególne długości fal i wykrycie charakterystycznych przesunięć widma, wywołanych ruchem gazu wokół czarnej dziury. Dzięki temu astronomowie wykryli gaz poruszający się z prędkością ponad 3500 km/s. To sygnał wskazujący na istnienie aktywnego jądra galaktycznego. Zauważono je przy przesunięciu ku czerwieni z = 9,288.
Galaktyka należy do intrygującej klasy Małych Czerwonych Kropek (Little Red Dots). To odkryte w 2024 roku przez JWST kompaktowe obiekty, które pojawiły się między 0,6 a 1,5 miliarda lat po powstaniu wszechświata. W przypadku CAPERS-LRD-z9 źródłem intensywnego blasku jest supermasywna czarna dziura. Jej masę oszacowano na nawet 300 milionów mas Słońca, co stanowi do połowy masy wszystkich gwiazd w galaktyce.
Modelowanie emisji w zakresie UV i optycznym sugeruje, że czarna dziura jest otoczona gęstym obłokiem neutralnego gazu o gęstości rzędu 1010 cząsteczek wodoru na centymetr sześcienny. Ten gaz, działając jak filtr, nadaje obserwowanej galaktyce charakterystyczny czerwony odcień. Obserwacje wskazują również na małe rozmiary galaktyki, jej średnica to około 1100 lat świetlnych.
Tak masywna czarna dziura w tak młodym Wszechświecie rodzi fundamentalne pytania o mechanizmy ich powstawania. Być może czarne dziury we wczesnym wszechświecie rosły znacznie szybciej, niż zakładają obecne modele, albo też rozpoczynały swoje istnienie od znacznie większej masy.
Więcej na ten temat: CAPERS-LRD-z9: A Gas-enshrouded Little Red Dot Hosting a Broad-line Active Galactic Nucleus at z = 9.288.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Układzie Słonecznym zauważono kometę o miliardy lat starszą od samego Układu. Na grafice poniżej możecie zobaczyć orbitę Słońca (żółte linie) wokół centrum Drogi Mlecznej oraz orbitę komety 3I/ATLAS (linie czerwone). Na dwóch grafikach przedstawiających widok z boku wyraźnie widać, że kometa odlatuje daleko od płaszczyzny naszej galaktyki.
Odkryta niedawno międzygwiezdna kometa 3I/ATLAS, jest prawdopodobnie najstarszą znaną nam kometą. Astronom Matthew Hopkins z University of Oxford poinformował podczas tegorocznego spotkania Królewskiego Towarzystwa Astronomicznego, że może mieć ona ponad 7 miliardów lat, jest zatem o 3 miliardy lat starsza od Układu Słonecznego.
3I/ATLAS jest zaledwie 3. znanym nam obiektem z przestrzeni międzygwiezdnej. W przeciwieństwie do dwóch poprzednich międzygwiezdnych gości gości – 1I/Oumuamua oraz 2I/Borisov – porusza się ona po bardzo stromej trajektorii przez Drogę Mleczną. Trajektorii, która wskazuje, że kometa powstała poza płaszczyzną galaktyki. W płaszczyźnie znajduje się Słońce i większość gwiazd. A nad i pod płaszczyzną krążą bardzo stare gwiazdy.
Wszystkie komety z Układu Słonecznego, takie jak kometa Halleya, powstały wraz z nim, więc liczą sobie około 4,5 miliarda lat. Obiekty spoza Układu mogą być znacznie starsze. Dotychczas Układ Słoneczny odwiedziły trzy takie obiekty i wszystko wskazuje na to, że 3I/ATLAS jest najstarszym z nich.
Badacze przypuszczają, że kometa bogata jest w lód. Wstępne obserwacje wskazują, że jest większa niż jej międzygwiezdni poprzednicy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba najprawdopodobniej odkrył planetę o masie Saturna, krążącą wokół pobliskiej młodej gwiazdy TWA 7. Jeśli odkrycie się potwierdzi, będzie to pierwsza egzoplaneta odkryta przez JWST metodą obrazowania bezpośredniego oraz najlżejsza planeta odkryta kiedykolwiek tą techniką. Odkrycia dokonano za pomocą urządzenia MIRI (Mid-Infrared Instrument), które zarejestrowało źródło słabego promieniowania podczerwonego w dysku otaczającym gwiazdę. Źródło znajduje się w odległości około 50 jednostek astronomicznych od TWA 7. Odpowiada to spodziewanej pozycji planety i wyjaśnia kluczowe cechy dysku.
Badacze z Francji, USA, Irlandii i Niemiec wykorzystali koronograf do przesłonięcia blasku gwiazdy, chcąc w ten sposób zauważyć słabiej świecące obiekty w jej pobliżu. Dzięki zaawansowanym algorytmom przetwarzającym obraz zauważyli w pobliżu słabe źródło promieniowania. Naukowcy wykluczyli, że może być to obiekt z Układu Słonecznego znajdujący się w tej samej części nieboskłonu. Istnieje niewielkie prawdopodobieństwo, że źródłem promieniowania jest galaktyka w tle, jednak zdobyte dowody wskazują na planetę.
Zaobserwowany obiekt znajduje się w przerwie jednego z trzech pierścieni pyłu otaczających TWA 7. Jasność obiektu, jego barwa, odległość od gwiazdy i pozycja w pierścieniu są zgodne z teoretycznymi przewidywaniami dotyczącymi młodych chłodnych planet o masie Saturna, które oczyszczają dysk protoplanetarny ze szczątków.
Dotychczasowe analizy wskazują, mamy do czynienia z młodą planetą, której masa wynosi 0,3 masy Jowisza, czyli jest 100-krotnie większa od Ziemi i odpowiada masie Saturna. Jej temperatura to 47 stopni Celsjusza.
TWA 7, znana jako CE Antilae, to młody (ok. 6,4 miliona lat) czerwony karzeł oddalony od nas o około 34 parseki (ok. 110 lat świetlnych). Znajduje się w asocjacji TW Hydrae. Otaczający ją dysk protoplanetarny jest niemal całkowicie zwrócony w naszą stronę, co czyni go idealnym obiektem badań dla Webba.
Źródło: Evidence for a sub-Jovian planet in the young TWA 7 disk, https://www.nature.com/articles/s41586-025-09150-4
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.