Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy pracujący pod kierunkiem specjalistów z Columbia University odkryli, że wokół Saggitariusa A* (Sgr A*), masywnej czarnej dziury w centrum Drogi Mlecznej, krąży 12 mniejszych czarnych dziur. To pierwszy dowód na prawdziwość pochodzącej sprzed dziesięcioleci hipotezy dotyczącej budowy centrum naszej galaktyki.

Wszystko czego chcielibyśmy dowiedzieć się o interakcji pomiędzy wielkimi czarnymi dziurami, a małymi czarnymi dziurami, możemy dowiedzieć się badając ten obszar, mówi główny autor badań, astrofizyk Chick Hailey. Droga Mleczna to jedyna galaktyka, gdzie możemy badać wpływ supermasywnych czarnych dziur na małe czarne dziury. W innych galaktykach nie możemy dostrzec takich interakcji.

Naukowcy od ponad 20 lat szukają dowodów na wsparcie hipotezy o tysiącach czarnych dziur krążących wokół supermasywnych czarnych dziur w centrach dużych galaktyk. W całej naszej galaktyce, która liczy sobie 100 000 lat świetlnych średnicy, istnieje zaledwie około 50 czarnych dziur. A w tym regionie, o szerokości 6 lat świetlnych, może być ich 10 do 20 tysięcy i nikt nie był w stanie ich znaleźć. Brakowało więc wiarygodnych dowodów na ich istnienie, dodaje Hailey.

Sgr A* jest otoczona pyłem i gazem, które tworzą idealne środowisko powstawania masywnych gwiazd, które po śmierci stają się czarnymi dziurami. Ponadto supermasywny Sgr A* może przyciągać czarne dziury, które powstały poza tym pyłem i gazem.
Astronomowie sądzą, że większość krążących wokół Saggitariusa A* czarnych dziur to samotne obiekty. Jednak niektóre z nich mogły przechwycić pobliską gwiazdę i stworzyć układ podwójny. Zagęszczenie samotnych czarnych dziur i układów podwójnych powinno wzrastać w miarę zbliżania się do Sgr A*.

W przeszłości poszukiwano dowodów na istnienie układów podwójnych czarna dziura - gwiazda próbując zanotować rozbłysk promieniowania rentgenowskiego, do którego dochodzi podczas łączenia się czarnej dziury z gwiazdą. To oczywisty sposób na poszukiwanie czarnych dziur, jednak centrum naszej galaktyki jest tak bardzo od nas oddalone, że odpowiednio silny rozbłysk zdarza się raz na 100-1000 lat, mówi Hailey. Jego zespół zdał sobie sprawę, że żeby wykryć wspomniane układy podwójne trzeba szukać słabszego ale stabilnego promieniowania rentgenowskiego, które pojawia się po wstępnym rozbłysku.

Izolowane samotne czarne dziury są po prostu czarne. Nie wysyłają żadnych sygnałów. Więc poszukiwanie w centrum Galaktyki takich dziur nie jest zbyt rozsądne. Gdy jednak czarna dziura tworzy układ podwójny z gwiazdą, ma miejsce stała emisja promieniowania rentgenowskiego, którą można wykryć. Jeśli znajdziemy czarną dziurę powiązaną z gwiazdą o małej masie i wiemy, jaki odsetek czarnych dziur wiąże się z takimi gwiazdami, możemy obliczyć populację izolowanych czarnych dziur, wyjaśnia Hailey.

Uczeni przejrzeli historyczne dane z Chandra X-ray Observatory i w promieniu 3 lat świetlnych od Sgr A* znaleźli 12 układów czarna dziura-gwiazda. Po analizie właściwości i rozłożenie w przestrzeni tych układów podwójnych i ekstrapolacji swoich wyników na całe otoczenie Sgr A* stwierdzili, że musi się tam znajdować 300-500 układów podwójnych i około 10 000 izolowanych czarnych dziur.

Odkrycie ma bardzo duże znaczenie np. dla badań nad falami grawitacyjnymi. Znając liczbę czarnych dziur w centrum galaktyki można będzie obliczyć, jak wiele fal grawitacyjnych będzie emitowane.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Szalenie ciekawe. Wyobrażałem sobie już dawno układy dwuch czarnych dziur (bo dlaczego miały by nie istnieć) ale tysiące takich objektów to nowa dla mnie koncepcja. Czy czarne dziury nie mogłyby wytłumaczyć zjawiska brakującej materii którą dziś nazywamy ciemną materią? Może zamiast ciemnej materii skupić się właśnie na czarnych dziurach które równie dobrze mogą tłumaczyć ruch naszej galaktyki bez odwoływania się do jakiejś nieznanej nam, magicznej wręcz, ciemnej materii.

Share this post


Link to post
Share on other sites
11 godzin temu, KopalniaWiedzy.pl napisał:

W całej naszej galaktyce, która liczy sobie 100 000 lat świetlnych średnicy, istnieje zaledwie około 50 czarnych dziur

Stwierdzenie ewidentnie nieprawdziwe, tym bardziej,  że dalej czytamy o tym jak trudno je wykryć, nawet w mocno "zapylonym" centrum galaktyki. Może chodziło o znane BH ?

Godzinę temu, Miroslaw napisał:

Wyobrażałem sobie już dawno układy dwuch czarnych dziur (bo dlaczego miały by nie istnieć)

Bo istnieją i dają nawet o sobie znać

Edited by rahl

Share this post


Link to post
Share on other sites
8 hours ago, Miroslaw said:

Może zamiast ciemnej materii skupić się właśnie na czarnych dziurach które równie dobrze mogą tłumaczyć ruch naszej galaktyki bez odwoływania się do jakiejś nieznanej nam, magicznej wręcz, ciemnej materii.

Problem w tym, że galaktyka by musiała być dziurawa bardziej niż porządny Emmenthaler ;) Proporcja zwykłej do ciemnej to ok. 1:6. Czyli, nie wchodząc w szczegóły, mniej więcej na dwie gwiazdy powinna przypadać jedna dziura.

Share this post


Link to post
Share on other sites

Częściowo tłumaczą. Ale na razie jest ich za mało.

Tak sobie myślę czy słusznie się mówi że jak coś wpadnie do CD to tracimy to na zawsze. Ostatecznie reszta wszechświata dostaje z CD grawitację, wcześniej jeszcze całą masę promieniowania w trakcie opadania materii.

Może w sumie nic nie ginie i CD ma bardzo bujną czuprynę.
I jest jeszcze jedna sprawa o której pomyślałem: co się dzieje jak do CD spada ciemna materia :D Jeśli jest jej aż tak dużo w galaktykach to ona głównie powinna spadać do CD.

Edited by thikim

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Czarnych dziur nie możemy bezpośrednio obserwować. Widzimy jednak gaz i pył, które świecą, gdy są przez nie wchłaniane. Wciągana do czarnej dziury materia wiruje na podobieństwo wody wpływającej do dziury, a nad i pod dziurą pojawia się tzw. korona, zbudowana z jasno świecącego ultragorącego gazu. Przed dwoma laty astronomowie ze zdumieniem zaobserwowali, że korona czarnej dziury w galaktyce 1ES 1927+654 szybko zniknęła, a później równie szybko jest pojawiła.
      Korony czarnych dziur mogą zmieniać jasność nawet 100-krotnie. Jednak w naszym przypadku doszło do bezprecedensowego wydarzenia. W ciągu zaledwie 40 dni jasność korony zmniejszyła się 10 000 razy. Niemal natychmiast korona zaczęła świecić coraz mocniej i po kolejnych 100 dniach jej blask był 20-krotniej silniejszy niż przed przygasaniem.
      Jako, że blask korony jest bezpośrednio związany z materią wchłanianą przez czarną dziurę, zaobserwowane zjawisko świadczyło o tym, że źródło materii zostało odcięte. Jednak co mogło być przyczyną tak spektakularnego wydarzenia?
      Międzynarodowy zespół astronomów z Izraela, USA, Wielkiej Brytanii, Chin, Kanady i Chile uważa, że przyczyną czasowego zniszczenia korony była zabłąkana gwiazda. Znalazła się ona zbyt blisko czarnej dziury i została rozerwana przez siły pływowe. Jej szybko poruszające się szczątki mogły spaść na dysk gazu otaczającego dziurę i chwilowo go rozproszyć.
      Zwykle nie obserwujemy tak dużych zmian w dysku akrecyjnym czarnej dziury, mówi główny autor badań, profesor Claudio Ricci z chilijskiego Uniwersytetu im. Diego Portalesa. To było tak dziwne, że początkowo sądziliśmy, iż coś jest nie tak z naszymi danymi. Gdy stwierdziliśmy, że są one prawidłowe, poczuliśmy dużą ekscytację. Nie mieliśmy jednak pojęcia, z czym mamy do czynienie. NIkt, z kim rozmawialiśmy, nie obserwował wcześniej takiego zjawiska.
      Hipotezę o rozerwanej gwieździe wzmacnia fakt, że kilka miesięcy przed zniknięciem korony zauważono, że dysk akrecyjny badanej czarnej dziury nagle pojaśniał w paśmie widzialnym. Być może był to wynik pierwszego zderzenia z resztkami gwiazdy.
      Najnowsze odkrycie jest również o tyle cenne, że naukowcy mogli całe zjawisko obserwować w czasie rzeczywistym. Oczywiście uwzględniając fakt, że galaktyka 1ES 1927+654 znajduje się w odległości 300 milionów lat świetlnych od Ziemi. Kiedy bowiem obserwatoria doniosły o pojaśnieniu dysku akrecyjnego zespół Ricciego zaczął obserwować czarną dziurę za pomocą kilku narzędzi. Wykorzystano teleskop NICER znajdujący się na Międzynarodowej Stacji Kosmicznej, Neil Gehrels Swift Observatory, NuSTAR oraz XMM-Newton. Wszystkie one zapewniały ciągły napływ danych przez wiele miesięcy, co pozwoliło na obserwowanie zniknięcia i pojawienia się korony.
      Autorzy badań nie wykluczają, że mogą istnieć inne wyjaśnienia obserwowanego zjawiska. Podkreślają, że jedną z wyróżniających się cech tego, co obserwowali był fakt, że spadek jasności korony nie był liniowy. Zmiany zachodziły w różnym tempie, czasami jasność korony spadała 100-krotnie w czasie zaledwie 8 godzin. Wiadomo, że korony czarnych dziur mogą tak bardzo zmieniać jasność, jednak w znacznie dłuższym czasie. Tak dramatyczne skoki, do których dochodziło całymi miesiącami, to coś niezwykłego.
      Te dane wciąż stanowią zagadkę. Ale to niezwykle ekscytujące, gdyż oznacza, że uczymy się czegoś nowego o wszechświecie. Sądzimy, że hipoteza o gwieździe jest dobra, ale wiemy, że jeszcze przez długi czas będziemy to analizowali, mówi współautor badań profesor Erin Kara z MIT.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy korzystający z Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego poinformowali o... zniknięciu masywnej niestabilnej gwiazdy znajdującej się w jednej z galaktyk karłowatych. Naukowcy sądzą, że gwiazda stała się mniej jasna i przesłonił ją pył. Inna możliwa interpretacja jest taka, zapadła się tworząc czarną dziurę, bez stworzenia supernowej. Jeśli się to potwierdzi, będzie to pierwsza bezpośrednia obserwacja tak dużej gwiazdy kończącej życie w taki sposób, mówi doktorant Andrew Allan z Trinity College Dublin.
      W latach 2001–2011 różne grupy astronomów obserwowały w Galaktyce Kinman niezwykłą masywną gwiazdę. Wielokrotne obserwacje potwierdziły, że znajduje się ona na ostatnich etapach ewolucji. Allan i prowadzony przez niego międzynarodowy zespół naukowy z Irlandii, Chile i USA chcieli więcej dowiedzieć się o życiu masywnych gwiazd. Gdy jednak w 2019 roku skierowali VLT na gwiazdę, tej nie było tam, gdzie spodziewali się ją znaleźć.
      Galaktyka karłowata Kinman znajduje się w odległości około 75 milionów lat świetlnych od Ziemi w Konstelacji Wodnika. To zbyt duża odległość, by można było obserwować pojedyncze gwiazdy. Jednak możliwe jest odkrycie sygnatur niektórych z nich. Przez 10 lat kolejni astronomowie widzieli dowody, że znajduje się w niej gwiazda zmienna typu S Doradus. Tego typu gwiazdy są bardzo niestabilne, są ostatnim etapem życia gwiazd, których początkowa masa jest co najmniej 85 razy większa od masy Słońca. Żyją krótko i są niezwykle jasne. Gwiazda z Kinmana była 2,5 miliona razy jaśniejsza od Słońca.
      Allan i jego zespół stwierdzili, że gwiazda zniknęła. Byłoby czymś niezwykłym, gdyby tak masywna gwiazda zniknęła i nie pozostałaby po niej jasna supernowa, przyznaje Allan. Naukowcy zaczęli szukać gwiazdy. Wykorzystali w tym celu VLT oraz spektrograf ESPRESSO. Nic nie znaleźli. Użyli również instrumentu X-shooter. I dalej nic. Następnie zabrali się za analizę wieloletnich danych pochodzących z różnych źródeł.
      Dane pokazały, że w Galaktyce Kinman doszło do okresu intensywnych rozbłysków, które zakończyły się po roku 2011. Wiadomo, że gwiazdy zmienne typu S Doradus mogą pod sam koniec życia doświadczać silnych rozbłysków i znacznej utraty masy, a po tym procesie ich jasność dramatycznie spada.
      Naukowcy proponują dwa wyjaśnienia tego zjawiska oraz braku supernowej. Według pierwszego scenariusza po serii rozbłysków i utracie masy gwiazda znacznie straciła na jasności i może być częściowo przesłonięta pyłem. Drugie wyjaśnienie mówi o zapadnięciu się gwiazdy i powstaniu czarnej dziury. To byłoby niezwykłe, gdyż zgodnie z obowiązującymi obecnie teoriami, większość masywnych gwiazd kończy życie jako supernowa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dziwny biały karzeł podróżujący przez Drogę Mleczną może być pozostałością po „częściowej supernowej”, twierdzą autorzy badań opublikowanych niedawno na łamach Monthly Notices of the Royal Astronomical Society. Gwiazda mknąca przez naszą galaktykę z prędkością 900 000 km/h od lat stanowi zagadkę dla naukowców. Wkrótce po jej odkryciu w 2015 roku zauważono, że ma ona niezwykłą atmosferę.
      Wewnętrzna struktura białych karłów jest zwykle zbudowana z warstw. Jądra tych gwiazd składają się przeważnie z węgla oraz tlenu i są otoczone warstwą helu, a następnie warstwą wodoru. Astronomowie obserwujące białe karły zwykle widzą sam wodór, sam hel lub mieszaninę helu i węgla.
      Tymczasem naukowcy badający białego karła SDSS J1240+6710, znajdującego się 1430 lat świetlnych od Ziemi stwierdzili ze zdumieniem, że jego atmosfera to zadziwiająca mieszanina tlenu, neonu, magnezu i krzemu. Gdy autorzy najnowszych badań, korzystając z Teleskopu Hubble'a, przyjrzeli się gwieździe bliżej, stwierdzili, że w jej atmosferze znajduje się też węgiel, sód i glin. Nigdy wcześniej nie stwierdzono takiego składu atmosfery białego karła. Co więcej SD J1240+6710 jest też wyjątkowo mało masywny. Ma on zaledwie około 40% masy Słońca.
      Gdy odkryliśmy, że ten wyjątkowy biały karzeł ma małą masę i porusza się bardzo szybko, zaczęliśmy się zastanawiać, co się z nim stało w przeszłości, mówi główny autor badań, Boris Gansicke. Uczeni doszli do wniosku, że wszystkie niezwykłe właściwości gwiazdy można wyjaśnić „częściową supernową”.
      Supernowe to najpotężniejsze eksplozje gwiazd. Może do nich dojść, gdy biały karzeł pobierze zbyt wiele masy od towarzyszącej jej gwiazdy. Cała ta dodatkowa masa ściska jądro białego karła, co prowadzi do wzrostu ciśnienia i temperatury. W końcu zostaje zapoczątkowana termonuklearna reakcja łańcuchowa, w wyniku której dochodzi do wybuchu, a ten rozrywa białego karła na strzępy.
      Naukowcy zauważają, że pierwiastki obecne w atmosferze SDSS J1240+6710 mogą pochodzić z początku reakcji termojądrowej. Jednak zastanawiający jest tutaj brak pierwiastków takich jak żelazo, chrom, mangan czy nikiel. Te cięższe pierwiastki powstają z lżejszych. Ich brak sugeruje, że nasz biały karzeł przebył tylko część drogi do stania się supernową. Nie osiągnął temperatury i ciśnienie potrzebnego do wyprodukowania cięższych pierwiastków. To właśnie czyni tego karła wyjątkowym. Rozpoczęła się tam reakcja termojądrowa, ale zatrzymała się ona zanim powstały pierwiastki z grupy żelaza. To był krótki „epizod supernowej”, trwał kilka godzin, stwierdza Gansicke.
      Z badań wynika, że SDSS J1240+6710 był małą gwiazdą w porównaniu do białych karłów, które zamieniają się w supernową. Jako taki mógł co najwyżej skończyć jako słaba supernowa typu Iax.
      Dawniej astronomowie sądzili, że termojądrowa supernowa niszczy białego karła w całości. Jednak w ciągu ostatnich 10-15 lat dowiedzieliśmy się, że możliwe jest powstanie częściowej supernowej, po której pozostaje spalony biały karzeł. Eksplozja nie jest w tym przypadku na tyle silna, by zniszczyć gwiazdę, dodaje uczony.
      Eksplozja taka odrzuciła SDSS J1240+6710 od jej towarzysza, powodując, że przemierza on przestrzeń kosmiczną z prędkością, z jaką krążył wokół towarzyszącej jej gwiazdy. Taki scenariusz wyjaśnia zarówno masę, skład jak i prędkość badanego białego karła.
      Na podstawie masy i temperatury uczeni szacują, że do częściowej supernowej doszło przed około 40 milionami lat. Nie wiemy, jak wyglądał towarzysz SDSS J1240+6710, ale prawdopodobnie był on podobny do badanego karła.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trójwymiarowa mapa wszechświata ujawniła istnienie jednej z największych znanych człowiekowi struktur. Ściana Bieguna Południowego, bo tak nazwano tę strukturę, składa się z setek tysięcy galaktyk i rozciąga na odległość 1,4 miliarda lat świetlnych. Wcześniej tego giganta nie zauważono, gdyż jego większa część znajduje się za jasno świecącą Drogą Mleczną.
      Ściana Bieguna Południowego rozmiarami dorównuje Wielkiej Ścianie Sloan, szóstej największej strukturze wszechświata.
      Astronomowie od dawna wiedzą, że galaktyki nie są rozrzucone przypadkowo, ale tworzą wielką kosmiczną sieć. Składa się ona ze zbiorów galakty i wielkich struktur gazowych pomiędzy nimi, a wszystko to poprzedzielane jest pustką kosmosu. Kosmografia zajmuje się mapowaniem tej struktury. Już wcześniej kosmografowie zauważyli inne gigantyczne struktury wszechświata.
      W 2014 roku Daniel Pomarede z Uniwersytetu Paris-Saclay poinformował o istnieniu supergromady Laniakei. To wielka gromada galaktyk, do której należy też Droga Mleczna. Laniakea ma szerokość 520 milionów lat świetlnych.
      Teraz Pomarede i jego zespół przyjrzeli się obszarowi znanemu jako strefa unikania. To ten fragment południowej części wszechświata, który jest przed naszymi oczami przesłonięty Drogą Mleczną. Jasne światło naszej galaktyki przesłania to, co poza nim. Naukowcy śledzili zarówno przesunięcie galaktyk ku czerwieni, jak i ich ruch względem siebie oraz oddziaływania grawitacyjne. Następnie dzięki specjalnym algorytmom uczeni byli w stanie określić, jak wygląda rozkład materii w strefie unikania i wokół niej.
      Analiza wykazała istnienie olbrzymiej struktury z centrum na południowym nieboskłonie, której jedno wielkie ramię rozciąga się w kierunku Gwiazdozbioru Wieloryba, a drugie w kierunku Gwiazdozbioru Ptaka Rajskiego.
      Ściana Bieguna Południowego trafi więc do czołówki największych struktur we wszechświecie. Na czele tej listy znajduje się gigantyczna Wielka Ściana Herkulesa-Korony Północy, której rozpiętość sięga 10 miliardów lat świetlnych. W 2015 roku informowaliśmy o odkryciu Gigantycznego Pierścienia Rozbłysków Gamma. Rozciąga się on na 5,6 miliarda lat świetlnych. Pokonał więc ówczesną rekordzistkę, czyli Olbrzymią Wielką Grupę Kwazarów o szerokości 4 miliardów lat świetlnych. Strukturami większymi od Ściany Bieguna Południowego są jeszcze Wielka Grupa Kwazarów U1.11 (2,5 miliarda lat świetlnych) oraz Wielka Grupa Kwazarów Clowesa-Campusano (2 miliardy lat świetlnych).

      « powrót do artykułu
×
×
  • Create New...