Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nosząc podczas walki zbroje, średniowieczni żołnierze zużywali 2-krotnie więcej energii, niż gdyby ich na siebie nie wkładali. Naukowcy z Wielkiej Brytanii, Włoch i Nowej Zelandii jako pierwsi klarownie zademonstrowali, w jaki sposób średniowieczna zbroja ograniczała wydajność rycerzy oraz innych osób uczestniczących w wojnach i potyczkach zbrojnych. Wyniki badań ukazały się w piśmie Proceedings of the Royal Society B.

Podczas walki XV-wieczni żołnierze nosili zbroję ze stalowych płyt, ważącą przeważnie 30-50 kg. Uważa się, że to istotny czynnik który w dużej mierze decydował o tym, czy dana armia wygra, czy poniesie porażkę. Odkryliśmy, że noszenie takiego ciężaru rozłożonego na całym ciele wymaga zużycia o wiele większych ilości energii niż noszenie identycznej masy w plecaku. Dzieje się tak, gdyż kończyny są obciążone dodatkowymi kilogramami [ok. 7-8], co oznacza, że trzeba włożyć więcej wysiłku w każdy krok. W przypadku plecaka ciężar znajduje się w jednym miejscu i przesunięcie nóg jest prostsze – tłumaczy szef zespołu badawczego dr Graham Askew z Uniwersytetu w Leeds.

Podczas eksperymentów akademicy z Leeds, Mediolanu i Auckland współpracowali z wytrenowanymi ochotnikami, którzy odtwarzają walki dla Royal Armouries Museum w Leeds. Wkładali oni dokładne repliki 4 rodzajów europejskich zbroi pełnych (w tym angielskiej, północnowłoskiej i niemieckiej, zwanej częściej gotycką) i biegali oraz maszerowali na bieżni. W tym czasie za pomocą maski do respirometrii mierzono zużycie tlenu i ilość wydalanego dwutlenku węgla. W ten sposób uzyskiwano dane dotyczące wykorzystania energii. Dodatkowo akademikom udało się stwierdzić, jak zbroja wpływała na oddech. W normalnych warunkach osoba wykonująca ćwiczenia na bieżni oddychałaby głęboko, tymczasem tutaj pojawiała się seria o wiele płytszych ruchów klatki piersiowej, które także przyczyniały się do zużywania większych ilości energii. Przy poruszaniu się bardzo szybko zaczynało brakować tchu, co zapewne mocno ograniczało wydajność bojową – podkreśla dr Federico Formenti z Uniwersytetu w Auckland. Kamera szybkoklatkowa pozwoliła na analizę ruchów kończyn.

W XV w. zaczęto stosować na dużą skalę nowe rodzaje broni – kusze i długie angielskie łuki. Musiała więc wyewoluować także zbroja. Zbroja pełna, często tzw. płytowa, pokrywała całe ciało żołnierza. Za dodatkową ochronę trzeba było jednak słono zapłacić dodatkowym wysiłkiem. Co ciekawe, dotąd nikt nie sprawdził eksperymentalnie, jak dużym. Naukowcy sądzą, że zbroje przesądziły o wynikach różnych bitew, np. pod Azincourt, gdzie mający znaczną przewagę liczebną Francuzi przegrali z wojskami angielskimi pod wodzą króla Henryka V. Zakuci w zbroje Francuzi utknęli w błocie, które po nocnej burzy pokryło całą równinę. Trzon zwycięskiej armii stanowiło właśnie łucznictwo. W XVI w. sytuacja na polach bitwy zmieniła się, ponieważ na początku tego stulecia broń palna zaczęła osiągać coraz większy stopień rozwoju tak technicznego, jak i formalnego. Wskutek tego zmniejszyła się liczba starć twarzą w twarz. Interesujące, co się wtedy stało ze zbroją. Usunięto część osłaniającą podudzia, czyli element zwiększający energetyczność ruchów nóg – opowiada Askew.

Share this post


Link to post
Share on other sites

Jakby ochotnicy potrenowali w zbrojach 2-3 miesiące, nauczyli właściwej techniki oddechu i poruszania w niej wydatek energetyczny z pewnością by się zmniejszył. To ,że jest się wysportowanym nie oznacza że ma się umiejętność czy chodźby pojęcie o poruszaniu się w pancerzu... I mówie nie jako laik ale jako były członek bractwa rycerskiego :)

Share this post


Link to post
Share on other sites

Na stronie źródła artykułu jest filmik z eksperymentu i dokładnie widać jaką zbroję wybrali do testów. Natomiast u jeźdźca w pełnej zbroi ten ciężar inaczej się rozkłada i nie obciąża tak bardzo człowieka.

Pełna zbroja była bardzo droga i pewnie niezbyt wielu piechurów ją posiadało.

 

Myślę, że to mało odkrywczy eksperyment, bo bez niego intuicyjnie wiadomo, że w zbroi jest mniej mobilnie i ciężej - a 2 czy 3 razy niewiele zmienia.

Poza tym nie wiemy, jaki odsetek piechurów posiadał taką pełną zbroję, prawdopodobnie niewielki.

Ech...

Share this post


Link to post
Share on other sites

Każdy był pewnie w muzeum i widział średniowieczne sprzęty. Mnie rzuciło się w oczy łóżko rycerza: góra 1,5m długości czyli średniowieczny wojownik miał pewnie z 1,4m a jak się wzięło w rękę miecz to ważył kilka-kilkanaście kg. Czyli rycerz z tamtych czasów miał zupełnie inną budowę, był krępy ale musiał być mocno umięśniony. Zupełnie inaczej od współczesnego człowieka. Nie wiadomy też jest w mięśniach stosunek włókien wolno- i szybko-kurczących się u rycerzy, też mógł być inny jak dzisiaj. Także eksperyment nieco nietrafiony, bo jak wcześniej zuważono trening czyni swoje, a uwarunkowania fizyczne ludzi średniowiecza też były inne.

Share this post


Link to post
Share on other sites

Podczas walki XV-wieczni żołnierze nosili zbroję ze stalowych płyt, ważącą przeważnie 30-50 kg.

 

Że co? ;D Pełna bojowa zbroja płytowa ważyła zwykle 20 kg, do góra 30 kg. Ja się nie dziwię, że w 50-kilogramowym „Power Armorze” ktoś mógłby się zasapać czy doznać uszkodzenia kręgosłupa na polu bitwy. Rycerze (ci, których było na to stać) mieli owszem także wersje cięższe, aczkolwiek były to zdobione zbroje reprezentacyjne lub zbroje pojedynkowe.

Share this post


Link to post
Share on other sites

50 kilowa zbroja to bajka taksamo jak kilku-kulkunastu kilogramowy miecz :P Jeśli "jedynka" waży ponad 1 kilo to jest bubel, tak samo miecz wielki czy półtorak 1,2-1,5kg. 5 kilowym może i dało by się walczyć, pytanie tylko jak skutecznie i jak długo :)

Share this post


Link to post
Share on other sites

Najcięższe miecze dwuręczne to kilka kg: 4-5kg, te kilkanaście to już tylko kopie, na które były jak gdzieś czytałem, właśnie haki w zbroji bo to już ciężko było wozić konno trzymając ręcznie. Generalnie pamiętam odczucie z dzieciństwa, gdy próbowałem podnieśc taki miecz, wydawał mi się bardzo ciężki, pewnie wydawał się z dwa-trzy razy cięższy niż był w rzeczywistości  :)

Share this post


Link to post
Share on other sites

Problem w tym, że często mylone są miecze ceremonialne z mieczami bojowymi i potem wszyscy myślą, że zwykły zweihander ważył 10 kg i można było nim karczować las.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.
      Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.
      Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.
      Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.
      W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.
      Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych.
      Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.
      Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.
      Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.
      Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
      Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Średniowieczny szkielet zapewnił pierwsze fizyczne dowody, że paprocie były wykorzystywane w celach medycznych: w przypadku łysienia, łupieżu i kamieni nerkowych.
      Szkielet mężczyzny w wieku 21-30 lat pochodzi z nekropolii Can Reiners z Majorki. Znaleziono na nim ślady skrobi zbożowej oraz pierścienie zarodni paproci.
      Zarodnię porównano ze współczesnymi zarodniami, zebranymi na północy Majorki i na Półwyspie Iberyjskim. Stwierdzono, że przypomina ona sporangia zanokcicy skalnej (Asplenium trichomane). Analiza historycznej i współczesnej literatury botanicznej wykazała, że gatunek ten powszechnie uznawano za lekarstwo na kamienie nerkowe i łysienie. Paproć wykorzystywano też w roli środka wykrztuśnego, jako diuretyk, a także zioło na wywołanie menstruacji.
      Nie ma dowodów, by w jakimkolwiek okresie historycznym liście paproci wchodziły w skład diety. W źródłach pisanych, nawet tych z I w. n.e., są za to wzmianki o usuwaniu za ich pomocą objawów pewnych niezagrażających życiu chorób.
      Badając kamień nazębny szkieletu datującego się na, jak sądzimy, IX bądź X w., byliśmy w stanie określić, że zarodnia pochodziła z zanokcicy, rozpowszechnionego gatunku, który rośnie w skalistych rejonach na całym świecie. Te paprocie były przez stulecia wykorzystywane przez europejskich zielarzy, chirurgów, lekarzy i uzdrowicieli. Dotąd jednak dysponowaliśmy wyłącznie dokumentami opisującymi ich stosowanie - podkreśla dr Elena Fiorin z Wydziału Archeologii Uniwersytetu Yorku.
      Ze zwykłego kamienia nazębnego dowiedzieliśmy się, że społeczności z tej części Hiszpanii miały świadomość właściwości leczniczych pewnych roślin. Wiedziały też, jak je podawać, by uzyskać pożądany efekt.
      Źródła pisane podają, że wodą zalewano świeże bądź suszone liście. Czasem smak mikstury poprawiano za pomocą kwiatów pomarańczy albo dosładzano cukrem czy miodem.
      W oparciu o szkielet nie da się co prawda powiedzieć, na co leczono młodego mężczyznę, ale można przypuszczać, że chodziło o chorobę skóry, układu moczowego albo o udrożnienie górnych dróg oddechowych.
      Autorzy publikacji z International Journal of Osteoarchaeology dodają, że zanokcice są nadal wykorzystywane w Europie do leczenia całej gamy chorób. Dzięki zapisowi archeologicznemu możemy zrozumieć, jak w trakcie ewolucji ludzie wykorzystywali środowisko naturalne [i jego zasoby] w opiece zdrowotnej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Użytkownicy smartfonów, którym zależy na dłuższej pracy na pojedynczym ładowaniu baterii powinni zastanowić się nad częstszym używaniem... płatnych wersji oprogramowania. Abhinav Pathak i Charlie Hu z Purdue University oraz Ming Zhang z Microsoft Research odkryli, że bezpłatne aplikacje zużywają niezwykle dużo energii.
      Badacze stworzyli program Eprof, który bardzo szczegółowo opisuje zużycie energii przez urządzenie podczas używania różnych aplikacji. Następnie sprawdzili za jego pomocą smartfony z systemami Android i Windows Phone. Okazało się, że bezpłatne oprogramowanie, takie jak np. Angry Birds, Free Chess, Facebook i NYTimes na potrzeby swoich zasadniczych funkcji wykorzystuje jedynie 10-30 procent zużywanej energii. Na przykład Angry Birds używają tylko 20% wykorzystywanej energii na obsługę gry, a 45% jest zużywane na określenie lokalizacji użytkownika przez GPS oraz ładowanie odpowiednich reklam przez 3G. Łącze 3G pozostaje otwarte przez około 10 sekund po zakończeniu transmisji, co zużywa kolejne 28% energii.
      Eprof wykazał też, że takie marnotrawstwo energii jest związane z błędami niechlujnie napisanym kodem do zarabiania na bezpłatnych programach.
      Badacze udowodnili, że wilk może być syty i owca cała - poprawili kod w czterech programach, zmniejszając konsumpcję energii od 20 do 65 procent.
    • By KopalniaWiedzy.pl
      W powszechnej opinii średniowiecze to prawdziwe wieki ciemne. Przeciętny człowiek kojarzy średniowiecze z upadkiem cywilizacji, wojnami religijnymi, zabobonami i alchemią, która, swoją drogą, miała więcej wspólnego z nauką niż się wydaje.
      Specjaliści wiedzą jednak, że jest to obraz niepełny, a nauka nie rozpoczęła się od renesansu. Na Durham University powstała nawet inicjatywa o nazwie Ordered Universe, której celem jest pokazanie, jak wielki ferment naukowy miał miejsce w Anglii od XIII do XV wieku. Teraz naukowcy skupieni wokół tej inicjatywy dokonali zdumiewającego odkrycia. Okazuje się, że Robert Grosseteste, żyjący w XIII wieku duchowny, uczony i późniejszy biskup Lincoln, miał podobną wiedzę o podstawach kolorów, jaką mamy obecnie.
      Grosseteste był prawdziwym „człowiekiem renesansu“, który żył przed renesansem. Pisał o dźwięku, gwiazdach i kometach. Jednak uczeni z Durham są najbardziej podekscytowani dotarciem do napisanej przez niego w 1225 roku rozprawy na temat kolorów.
      Obecnie wiemy, że kolor zależy od długości fali, które są odbijane i pochłaniane. Producenci monitorów korzystają z faktu, że każdy kolor można uzyskać za pomocą trzech składowych - czerwonego, zielonego i niebieskiego - manipulując ich jasnością, nasyceniem i barwą.
      Teraz naukowcy uważają, że urodzony około 1175 roku Grosseteste wiedział mniej więcej to samo. Swoją teorię kolorów opisał, gdy był wykładowcą teologii na Oxfordzie i zawarł ją w zaledwie 400 łacińskich słowach. Nie przedstawił przy tym żadnych wyliczeń matematycznych, żadnych diagramów. To niezwykle konkretny fragment tekstu - mówi historyk Giles Gasper.
      Grosseteste pisze, że kolory nie istnieją samoistnie, ale powstają wskutek interakcji światła i materii. Ponadto stwierdza, że kolory powstają poprzez zmiany na trzech skalach. Jedna z nich rozciąga się od clara (jasna) do obscura (ciemna), druga od multa (liczna) do pauca (nieliczna), a trzecia od purum (czyste) do impurum (zanieczyszczone). Biel to, zdaniem duchownego, mieszanina clara, multa i purum. Jak łatwo się przekonać, używając jakiegokolwiek programu graficznego, biel rzeczywiście uzyskamy mieszając trzy kolory - czerwony, zielony i niebieski - przy ich największej jasności, barwie i nasyceniu. Na poziomie koncepcji to, co pisał Grosseteste zgadza się w niezwykle wysokim stopniu z tym, co wiemy obecnie - mówi Hannah Smithson z Oxford University, która uczestniczy w pracach Ordered Universe.
      Oczywiście biskup używał innych terminów niż my obecnie nie mówił o jasności, ale o skali jasny-ciemny, nie używał terminu nasycenie, ale pisał o liczna-nieliczna, w końcu zamiast o barwie informował o czystości koloru.
      Naukowcy uważają, że w teorii duchownego musiało być coś więcej niż tylko przypadek, dzięki któremu wymyślił właściwości światła. Zauważają, że wcześniej nie przywiązywano zbytnio uwagi do tego, co napisał, gdyż popełnił w tekście dwa podstawowe błędy. Pierwszy z nich to użycie cyfry 9 tam, gdzie powinno być 14. Drugi to stwierdzenie, że czarny składa się jedynie z obscura i pauca. Tymczasem, skoro sam napisał, iż biały to clara, multa i purum, zatem czarny powinien być obscura, pauca i impurum.
      Uczeni odkryli jednak, że Grosseteste padł ofiarą kopistów. Z niewiadomych przyczyny naukowcy pracowali dotychczas na późniejszych kopiach jego tekstu. Tymczasem Gasper dotarł do wcześniejszej jego wersji, która przechowywana jest w Oxfordzie i okazało się, że duchowny napisał liczbę 14. Użył przy tym arabskich cyfr, które w Europie pojawiły się w 1202 roku wraz z opublikowaniem przez Fibonecciego Liber Abaci. To pokazuje, że biskup był na bieżąco z najnowszymi osiągnięciami naukowymi. Niestety człowiek, który kopiował jego tekst najwyraźniej nie znał arabskich cyfr i zinterpretował znaki jako łacińską dziewiątkę - IX.
      Gasper, podejrzewając, że kopiści mogli popełnić więcej pomyłek, wybrał się do Madrytu, gdzie w Bibliotece Narodowej Hiszpanii przechowywana jest najstarsza znana wersja manuskryptu średniowiecznego uczonego. W nim w opisie koloru czarnego znalazł brakujące impurum. To dowodzi, że Grosseteste pracował równie metodycznie i skrupulatnie, a jego wywody były tak logiczne, jak każdego prawdziwego uczonego w wiekach późniejszych.
      Naukowcy z Ordered Universe zwracają uwagę, że mamy obecnie tendencję do lekceważenia podobnych traktatów, ze względu na inny sposób argumentacji i dowodzenia. Jedną z rzeczy, która mnie uderza, gdy pracuję nad tym projektem jest spostrzeżenie, jak mocno średniowieczne myślenie jest przesiąknięte matematyką. To bardzo wzmacnia wysuwane wówczas twierdzenia, ale jako że nie jest przedstawione w formie wzoru matematycznego, bardzo trudno jest nam to zauważyć - mówi Gasper.
      Uczeni chcą teraz dotrzeć do innych wczesnych kopii pism Grosseteste’a by sprawdzić, czy w dotychczasowych badaniach nie pominięto innych równie ważnych rzeczy.
    • By KopalniaWiedzy.pl
      Inżynierowie z Pennsylvania State University połączyli dwie technologie pozyskiwania energii - biochemiczne ogniwa paliwowe wykorzystujące mikroorganizmy oraz odwróconą elektrodializę - dzięki czemu udało się oczyścić ścieki dzięki energii pozyskanej z nich samych. Co więcej, powstała też nadmiarowa energia, którą można odprowadzić do sieci.
      Profesor Bruce E. Logan, który nadzorował badania, mówi, że ich celem jest doprowadzenie do sytuacji, w której systemy dostarczania wody i odprowadzania ścieków będą energetycznie samowystarczalne. Zdaniem Logana miejskie ścieki mają kolosalny potencjał energetyczny. Można z nich pozyskać nawet 9-krotnie więcej energii niż potrzeba do ich oczyszczenia. Nie trzeba dużo myśleć, by dojść do wniosku, że cały proces można uczynić przynajmniej neutralnym pod względem zużycia energii - stwierdził uczony.
      Połączenie ogniwa biochemicznego i odwróconej elektrodializy pozwoliło na przezwyciężenie słabości obu tych technologii.
      Ogniwo biochemiczne składa się z dwóch komór przedzielonych półprzepuszczalną membraną, którą protony mogą przenikać tylko w jedną stronę. Wystarczy wsadzić elektrody do komór, by uzyskać baterię. Do jednej z elektrod należy przyczepić mikroorganizmy rozkładające molekuły organiczne. Z ich rozkładu powstają prostsze molekuły oraz protony i elektrony. Protony przechodzą przez membranę, tworząc potencjał pomiędzy obiema komorami, a elektrony przepływają poprzez elektrodę do sąsiedniej komory, gdzie łączą się z protonami i tlenem, tworząc wodę.
      Odwrócona elektrodializa również korzysta z przepływu jonów, jednak działa dzięki różnej ich koncentracji. Do pracy wymaga dwóch membran - jednej pozwalającej na przepływ jonów ujemnych, drugiej umożliwiającej przepływ jonów dodatnich. Całość trzeba zatem podzielić na trzy komory. Jeśli np. do środkowej wlejemy wodę morską, a do bocznych słodką, to jony przenikną przez odpowiednie membrany, w wyniku czego jedna z bocznych komór będzie naładowana dodatnio, druga - ujemnie.
      Obie te metody nie są pozbawione wad. Biochemiczne ogniwo paliwowe pozwala na uzyskanie niewielkiej mocy, a odwrócona elektrodializ działa, gdy połączymy co najmniej 20 par membran, co jest kosztownym przedsięwzięciem.
      Dzięki połączeniu obu technologii liczbę par membran w systemie odwróconej elektrodializy zmniejszono do 5, jednocześnie zwiększając 7-krotnie moc uzyskiwaną z ogniwa biochemicznego.
      Kluczowym elementem całości jest użycie w miejsce wody morskiej wodorosoli amonowej kwasu węglowego (NH4HCO3). Sól tę można odzyskiwać z roztworu po podgrzaniu go do nieco ponad 40 stopni Celsjusza, co oznacza, że można poddawać ją recyklingowi wykorzystując ciepło odpadowe całego procesu.
      Największym problemem stojącym przed zespołem Logana jest przeskalowanie urządzenia tak, by można było przeprowadzić testy w istniejących systemach wodociągowych.
×
×
  • Create New...