Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Wun-Yi Shun z Thing Hua University na Tajwanie zaproponował nowe modele kosmologiczne, które mogą lepiej wyjaśniać budowę wszechświata niż teoria Wielkiego Wybuchu. Modele Shuna pozwalają objaśnić np. problem coraz szybszego rozszerzania się wszechświata i to bez konieczności odwoływania się do takich stałych jak np. ciemna energia.

Shu postanowił spojrzeć w zupełnie nowy sposób na takie pojęcia jak czas, przestrzeń masa i długość. W zaproponowanym przezeń modelu czas i przestrzeń mogą zmieniać się jedno w drugie, a czynnikiem zmiany może być różna prędkość światła. Do podobnych przemian dochodzi pomiędzy masą a długością, a czynnikiem zmiany jest tutaj zmieniająca się "stała" grawitacji oraz zmieniająca się prędkość światła.

Innymi słowy Shu proponuje by uznać, że w miarę jak wszechświat się rozszerza, czas zmienia się w przestrzeń, a masa w odległość. Gdy wszechświat się kurczy, zachodzą odwrotne przemiany.

Model Shu zakłada przede wszystkim, że:
- prędkość światła i stała grawitacji nie są stałe, a ulegają zmianom w miarę ewolucji wszechświata,
- czas nie ma początku ani końca,
- wszechświat ma kształt hipersfery, a więc nie występuje w nim problem horyzontu i problem płaskości związane z teorią Wielkiego Wybuchu,
- tempo rozszerzania się wszechświata czasami przyspiesza, a czasami zwalnia.

Shu przetestował swój model wykorzystując do tego celu najnowsze obserwacje dotyczące supernowej typu 1a. Ujawniają one, że rozszerzanie się wszechświata przyspiesza. Model Shu pasuje do tych obserwacji. Tymczasem teoria Wielkiego Wybuchu nie pasuje, co skłoniło naukowców do szukania wyjaśnień w istnieniu ciemnej energii.

Moja praca przedstawia nowy model teoretyczny opisujący, w jaki sposób oddziałują na siebie geometria czasoprzestrzeni oraz dystrybucja masy i energii - mówi Shu. Rozwiązuje ona współczesne problemy kosmologiczne, takie jak wielki wybuch, ciemna energia i problem płaskości - dodaje.

Share this post


Link to post
Share on other sites

Rosyjski (czy też jeszcze radziecki) pisarz s-f Siergiej Sniegow w swojej trylogii „Ludzie jak bogowie” (/„Gwiezdne szlaki”) przedstawił wizję, w której ludzie pokonują kosmos z szybkością większą od prędkości światła dzięki opanowaniu reakcji zamiany masy w przestrzeń i przestrzeni w masę.

Dalej opisał on „fale przestrzenne” rozchodzące się z prędkością nadświetlną, a światło miałoby być ich graniczną odmianą.

Share this post


Link to post
Share on other sites

W teorii istnieje możliwość podróżowania szybciej od światła poprzez zakrzywienie przestrzeni, coś na zasadzie skrótów do domu. Kiedyś jak najbardziej do zrobienia. Kilkaset lat temu palili na stosie za wygadywanie bzdur, że człowiek może latać.

 

Wg. mnie teoria wielkiego wybuchu jest wyssana z palca. Ma luki nie do zaakceptowania, ponieważ mówi, że na początku nie było nic i nagle coś powstało. Perpetum Mobile nie istnieje tak jak Bóg, więc pozostaje możliwość, że istniał od zawsze.

Zresztą czas nie jest stały tylko zmienny, więc obejmowanie wszechświata ramami czasowymi...hmmm

Chociażby w pracy możemy to zauważyć. Jednej osobie czas mija szybko jak mrugnięcie okiem a drugiej akurat na odwrót.

Share this post


Link to post
Share on other sites

Musisz się znać na rzeczy, skoro podejmujesz się osądzić, jaka teoria jest akceptowana a jaka wyssana z palca. :D Ja bym się obawiał. :D

Share this post


Link to post
Share on other sites

W nauce występują 2 rzeczy, przyczyna i skutek. A oni pomijają tę zasadę i twierdzą, że gdy powstawał wszechświat nie było przyczyny. Zawsze musi być jakiś zapalnik i nie ma od tego odstępstw. Znikąd nie da się zrobić coś. Z pustego to i Salomon nie naleje...

Share this post


Link to post
Share on other sites

Teoria przedstawiona przez pana Wun-Yi Shun jest na wskroś buddyjska; być może nie ma w tym przypadku biorąc pod uwagę jego nazwisko i kraj :D

Share this post


Link to post
Share on other sites

Hm, jak on, kurde, nieskończoność czasu z hipersferycznością pogodził? No i jednak obserwujemy płaskość przestrzeni...

Share this post


Link to post
Share on other sites

W przedstawionej teorii dziwi mnie możliwość zamiany czasu w przestrzeń, chociaż jeszcze dziwniejsze i nierealne jest występowanie w teorii względności czasoprzestrzeni, czyli połączenia dwóch wymiarów w jeden.

Ponadto mam uwagę do komentarza przedstawionego przez inhet. Pytanie: jak się obserwuje płaskość przestrzeni? Przecież przestrzeń jest trójwymiarowa, płaska może być tylko dwuwymiarowa płaszczyzna.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
      Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
      Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
      Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
      Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
      Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
      Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem międzynarodowego zespołu naukowego, wszechświat jest pełen planet zawierających wodę. Uczeni uważają, że jest ona ważnym składnikiem egzoplanet o rozmiarach od 2 do 4 wielkości Ziemi.
      To była dla nas wielka niespodzianka, gdy zdaliśmy sobie sprawę, że musi być tak dużo wodnych światów, mówi główny autor badań, doktor Li Zen z Uniwersytetu Harvarda. Z badań, przeprowadzonych za pomocą teleskopów Keplera i Gaia wynika bowiem, że wiele ze znanych nam egzoplanet zawiera do 50% wody. Dla porównania, na Ziemi woda stanowi zaledwie 0,02% masy planety.
      Wiele z potwierdzonych dotychczas około 4000 egzoplanet można zaliczyć do jednej z dwóch kategorii: takich, których średnica wynosi około 1,5 średnicy Ziemi oraz takich o średnicy około 2,5 średnicy naszej planety. Po przeanalizowaniu średnic i mas badanych egzoplanet uczeni stworzyli model ich budowy.
      Sprawdziliśmy, jak masa ma się do średnicy i stworzyliśmy model wyjaśniający tę zależność, mówi Li Zeng. Wynika z niego, ze planety o średnicy do 1,5 średnicy Ziemi to zwykle światy skaliste o masie 5-krotnie większej niż masa naszej planety. Z kolei te o średnicy 2,5-krotnie większej od średnicy Ziemi mają masę 10-krotnie większą od naszej planety i są światami wodnymi.
      Tam występuje woda, ale nie jest ona tak powszechnie dostępna jak na Ziemi. Temperatury powierzchni tych planet wynoszą 200–500 stopni Celsjusza, są otoczone atmosferą zdominowaną przez parę wodną z płynną warstwą poniżej. W głębi planety woda ta, pod wpływem wysokiego ciśnienia, została prawdopodobnie zmieniona w lód. Jeszcze niżej jest skaliste jądro planety. Piękno naszego modelu polega na tym, że wyjaśnia nam, jak skład planety ma się do znanych nam danych na jej temat, mówi Li Zeng.
      Nasze dane wskazują, że około 35% egzoplanet większych od Ziemi powinno być bogate w wodę. Te wodne światy formowały się w podobny sposób, jak jądra dużych planet Układu Słonecznego. Niedawno rozpoczęta misja TESS pozwoli na znalezienie większej ich liczby, a w przyszłości teleskop Jamesa Webba pozwoli na zbadanie ich atmosfery. To ekscytujący okres dla badaczy egzoplanet, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Włosko-amerykańskiemu zespołowi naukowemu udało się odnaleźć ostatni we wszechświecie rezerwuar zaginionej materii. Tej materii, która jest widoczna i jest złożona z barionów. Dotychczas astrofizycy potrafili zlokalizować około 2/3 materii stworzonej podczas Wielkiego Wybuchu.
      Teraz międzynarodowy zespół naukowy stwierdził, że reszta znajduje się pomiędzy galaktykami, w postaci gazu o temperaturze około miliona stopni Celsjusza. Odkrycie jest bardzo ważne dla astrofizyki. Jednym z kluczowych elementów pozwalających na przetestowanie teorii Wielkiego Wybuchu jest dokonanie dokładnego spisu barionów helu, wodoru i wszystkich innych pierwiastków, wyjaśnia współautor badań Michael Shull.
      Obecnie wiemy, że około 10% materii tworzy galaktyki, a około 60% znajduje się w chmurach gazu pomiędzy nimi. W 2012 roku Shull i jego zespół postawili hipotezę, że brakujące 30% barionów ulokowało się w ciepłym ośrodku międzygalaktycznym (WHIM, Warm-Hot Intergalactic Medium). W celu potwierdzenia hipotezy naukowcy zaczęli satelitarne obserwacje kwazara 1ES 1553. To bardzo jasno świecąca czarna dziura. Obserwując tego typu struktury, można określić, jak promieniowania rozchodzi się w kosmosie.
      Dzięki teleskopom Hubble'a i XMM-Newton odkryto sygnatury wysoce zjonizowanego tlenu leżącego pomiędzy kwazarem an Układem Słonecznym. Jego gęstość jest wystarczająca, by – po ekstrapolacji na cały wszechświat – można było powiedzieć o odnalezieniu brakujących 30% materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.
      Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję.
      W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami.
      W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA.
      Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst.
      Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.
    • By KopalniaWiedzy.pl
      W czasach obfitości orangutany z Borneo przejadają się owocami. Tworzą zapasy tłuszczu, by skorzystać z nich przy niedoborach preferowanego pożywienia. Poza naszym gatunkiem, tworzenie zapasów tkanki tłuszczowej nie występuje u naczelnych, dlatego spokrewnione z nami orangutany wydają się dobrym modelem do badania ludzkich zaburzeń odżywiania i otyłości.
      Mimo dzisiejszej pandemii otyłości tak naprawdę nie rozumiemy podstaw otyłości lub tego, jak działają diety wysoko- czy niskobiałkowa - podkreśla prof. Erin Vogel z Rutgers University. W swojej pracy pt. "Borneańskie orangutany na krawędzi proteinowego bankructwa" Amerykanka zaprezentowała, w jaki sposób orangutany, które bazują na niskobiałkowych owocach, wytrzymują wahania zawartości protein w swoim pożywieniu. Sądzę, że badanie menu niektórych naszych najbliższych krewnych [...] może pomóc w zrozumieniu zagadnień związanych z naszą współczesną dietą.
      Badania specjalizującej się w antropologii ewolucyjnej Vogel wykazały, że orangutany przybierały na wadze wyłącznie w okresach spożywania kalorycznych i białkowych pokarmów (fakt ten jest często ignorowany przez osoby walczące ze zbędnymi kilogramami, które zakładają, że najlepszym sposobem na schudnięcie jest dieta niskowęglowodanowa z dużą zawartością białka). Tylko podczas spożywania niewielkiej liczby kalorii organizm sięgał po zapasy tłuszczu, a wreszcie białka mięśni.
      Akademicy analizował próbki moczu pobierane w ciągu 5 lat przez dr Cheryl Knott z Uniwersytetu w Bostonie i jej współpracowników. Określano zawartość metabolitów oraz stabilnych izotopów azotu. Okazało się, że podczas utrzymujących się deficytów białka (gdy brakowało niskobiałkowych owoców) orangutany jadały zawierające więcej białek liście oraz wewnętrzną część kory. Energię zapewniały im tkanka tłuszczowa, a później mięśnie.
      Odkryliśmy, że dzienna dawka białek przyjmowana przez orangutany, gdy nie ma owoców, jest niewystarczająca dla ludzi i stanowi 1/10 ilości spożywanej przez goryle górskie. To jednak wystarczy, by uniknąć poważnego niedoboru protein.
      Biolodzy opowiadają, że orangutany żyjące w tym wymagającym środowisku wykorzystują okresy obfitości, kiedy na drzewach dojrzewa 80% owoców. Wtedy jedzą, jedzą i tyją. Później muszą przetrwać okresy znacznego ograniczenia owocowania, które mogą potrwać nawet 8 lat. Przy diecie składającej się z liści i kory w moczu wzrasta stężenie ketonów - to znak, że organizm zużywa tłuszcze. Podniesiony poziom izotopów azotu należy zaś interpretować jako wskazówkę rozkładania mięśni.
      Amerykańskie studium unaocznia, że zdolność orangutanów do tworzenia zapasów tłuszczu zwiększa ich szanse na przeżycie, ale stanowi zgubę dla ludzi, którzy w wielu przypadkach ich nie potrzebują. W przyszłości Vogel zamierza prześledzić wahania poziomu greliny, leptyny oraz cytokin.
×
×
  • Create New...